

Effect of Combined PD-1 and STAT3 Pathway Blockade Treatment on K-ras Mutant Lung Cancer

Cody Chou^{1,2}, Michael J. Clowers^{1,3}, Marco A. Ramos-Castaneda¹, Stephen Peng¹, T. Kris Eckols⁴, David J. Tweardy⁴, Seyed Javad Moghaddam^{1,3}

MD Anderson Cancer Center

¹Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

²King Foundation High School Summer Program, Houston, TX, USA

³The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA

⁴Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Background

- Lung adenocarcinoma (LUAD) is an aggressive form of non-small cell lung cancer¹
- 30% of LUAD patients have mutations in the Kirsten rat sarcoma viral oncogene (K-ras)¹
- K-ras mutations are challenging to directly treat due to drug resistance²
- Transcription factor STAT3 is a major component of tumor associated inflammation in K-ras mutant tumors³
- STAT3 upregulates immune checkpoint molecules PD-1/PD-L1⁴
- Targeting downstream or co-occurring pathways of Kras may provide new targeted therapy

Aim

We treated a K-ras mutant lung cancer mouse model, CC-LR, with TTI-101 (a STAT3 inhibitor) and/or anti-PD-1 to investigate the significance of targeting downstream/co-occurring pathways of K-ras

Methodology

- CC-LR lung cancer mice were treated with TT1-101 (provided by Tweardy and Eckols) and/or anti-PD-1 from 10 to 14 weeks of age
- Lung samples were extracted and stained with Hematoxylin and Eosin (H&E) staining to determine tumor area percentage

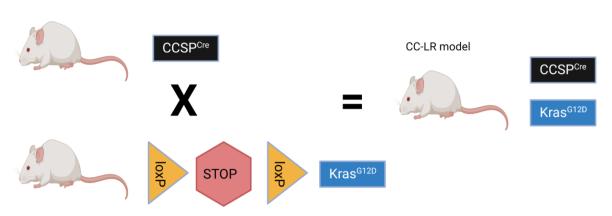
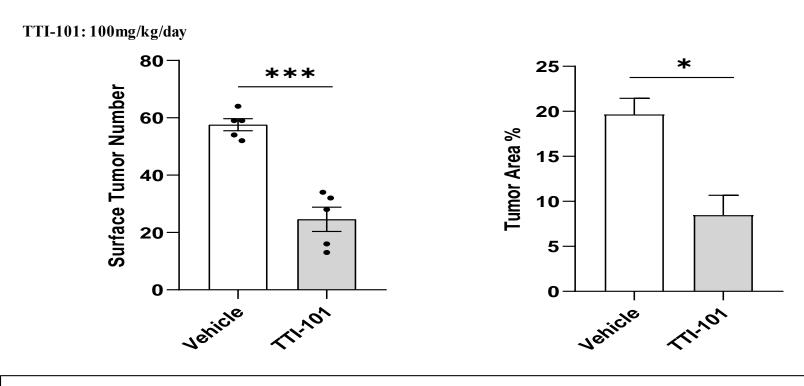



Figure 1. K-ras induced lung cancer mouse model, CC-LR, breeding scheme.

Results

Figure 2. Injection of TTI-101 reduces tumor number and area in CC-LR mice. Figures produced by Marco A. Ramos-Castaneda and Stephen Peng.

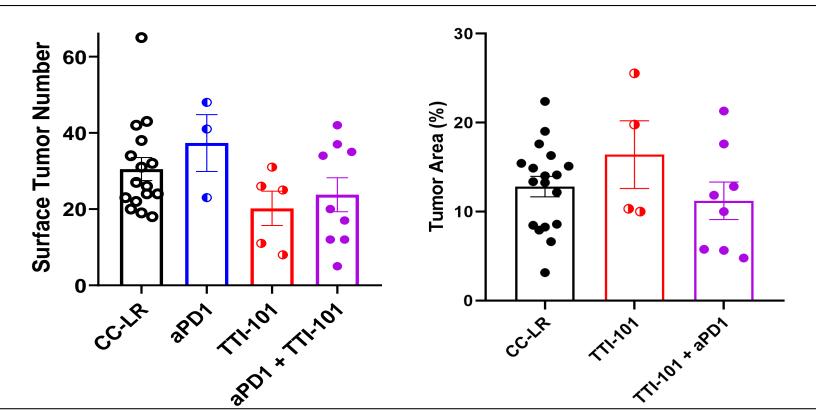
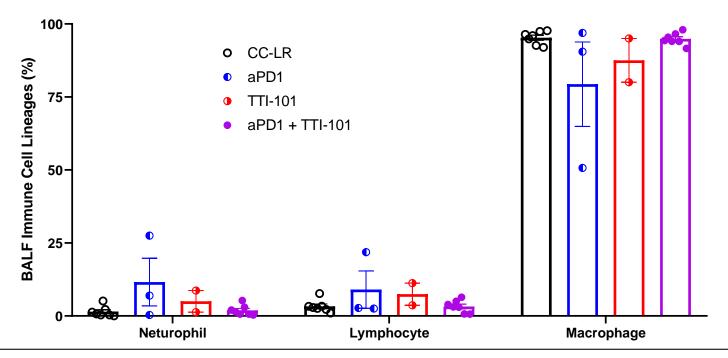
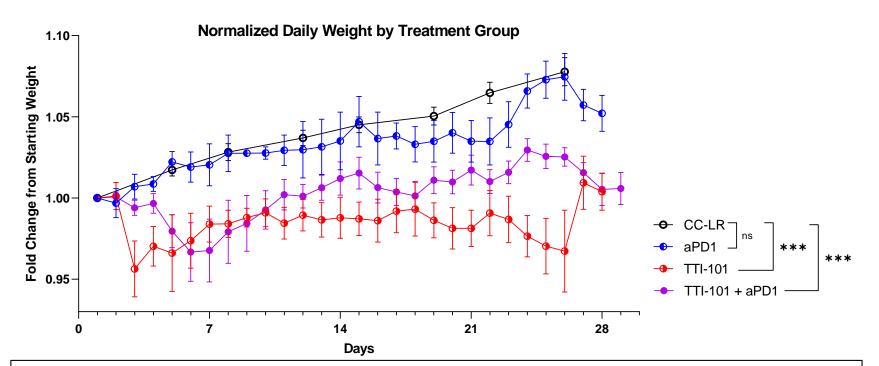




Figure 3. TTI-101 +/- anti-PD1 treatment trends toward reduced surface tumor number, but not tumor area, in CC-LR mice. Figures produced by Michael J. Clowers and Cody Chou

Figure 4. immune cell composition of different treatments in CC-LR mice. Figures produced by Michael J. Clowers

Figure 5. TTI-101 oral gavage causes modest weight loss in CC-LR mice. Figures produced by Michael J. Clowers and Cody Chou

Conclusion

- Based on preliminary data, single treatment of TTI-101 trends toward reduced tumor number
- Combination treatment of TTI-101 and anti-PD-1 trends toward reduced tumor number and area.
- Combination treatment, when compared to single treatment, is not significant
- Personalized treatment with TT1-101 and anti-PD-1 may serve as an alternative approach in the future

Future Work

- We plan to perform immunohistochemistry staining to detect pSTAT3
- We also plan to perform qPCR to detect inflammatory markers in the tumor environment

References

- 1) Goldstraw, P. et al. Non-small-cell lung cancer. The Lancet 378, 1727-1740 (2011).
- 2) Mayekar, M. K. & Bivona, T. G. Current landscape of targeted therapy in lung cancer. Clinical Pharmacology & Therapeutics 102, 757-764 (2017).
- 3) Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene **25**, 2105-2112 (2006).
- 4) Bu, L L et al. "STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC." *Journal of dental research* vol. 96,9 (2017): 1027-1034. doi:10.1177/0022034517712435