22 research outputs found

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Ecosystem respiration in two Mediterranean evergreen holm oak forests: drought effects and decomposition dynamics

    Full text link
    1. We present ecosystem respiration data from two Mediterranean forest sites in central Italy (Castelporziano) and southern France (Puéchabon) in order to analyse the role of soil drought and decomposition dynamics using different models. 2. Ecosystem respiration was derived from continuous eddy covariance measurements. The entire data set was separated into 5-day periods. For each period a function depending on three parameters was fitted to the scatter of eddy CO2 flux versus photosynthetic photon flux density. The gamma intercept of each curve was taken as an estimate of the average night-time ecosystem respiration during the period. The ecosystem respiration was analysed with different regression models as a function of soil water content and temperature. 3. Ecosystem respiration ranged from 1 to 7 micromol m-2 s-1 and showed a clear seasonality, with low rates during drought periods and in winter. The regression model analysis revealed that in drier soil, ecosystem respiration was more sensitive to soil moisture than is expressed by the often used hyperbolic model. 4. In contradiction to a simple multiplicative model, the Q10 of ecosystem respiration was not independent of moisture, but increased from nearly 1·0 at low moisture to above 2·0 at field capacity. Several explanations are discussed. 5. Of the variance in ecosystem respiration, 70-80% was explained with a model where Q10 of ecosystem respiration is a function of soil water content. 6. For the Puéchabon site, a soil carbon-balance model predicted only small changes in litter pool size (max. 7%), which caused only minor changes in soil microbial respiration (0·1micromol m-2 s-1). In contrast, the contribution of microbial regrowth dynamics to ecosystem respiration is estimated to be substantial (about 1·6 micromol m-2 s-1). The model predicted that soil microbial respiration probably provides the largest contribution to ecosystem respiration (about 50%). The importance of below-ground processes for ecosystem C balances is thus emphasized. (Résumé d'auteur
    corecore