9 research outputs found

    Goat production systems of the central highlands of Veracruz, Mexico

    Get PDF
    ABSTRACT The objective of this study was to characterize the goat production units of the central mountainous area of the state of Veracruz. A multiple case study was carried out considering socioeconomic aspects, type of forage, goat feeding, reproduction, improvement, and health. The results showed that goat farming and cheese production represent between 50 and 100% of the producers' income. The cultivated forages and the type of goat feed of the production units in the mountainous area are King grass CT-115, Maralfalfa, African Star, Alfalfa and Corn. Animal reproduction is carried out by controlled mating and births occur at the beginning and end of each year. The goat herds do not exceed 150 heads with a predominance of Saanen and Alpine breeds. The average daily production of milk ranges between 16-90 L and with a production of 2-3 L milk for animal/day. The activity is family-type and involves cultivation, animal management, milk production and the manufacturing of artisanal cheeses. Studies are required to confirm individual milk production.Objective: This study was to characterize the goat production units of the central mountain area of the state of Veracruz, Mexico. Disign/methodology/approach: A multiple case study was carried out taking into consideration socioeconomic aspects, type of forage, goat feeding, reproduction, improvement, and health. Results: The results showed that goat and cheese production account for 50-100% of the producers' income. The forages grown and the type of goat feed used in the production units of the mountain area are: King grass, CT-115, maralfalfa, giant star grass, alfalfa, and corn. Animal reproduction is carried out by controlled mating and births take place at the beginning and end of each year. Flocks do not exceed 150 heads; the predominant breeds are Saanen and Alpine. The average daily production of milk ranges from 16 to 90 L, with a production of 0.75-3 L milk animal-1 day-1. Study limitations/implications: None Findings/conclusions: The activity is family-based and involves cultivation, animal management, and milk and artisanal cheese production. Further studies are required to confirm individual milk production

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Sensory optimization of a flavor mix for a milkshake-like beverage formulated with residual grain from the amaranth popping process

    Get PDF
    ABSTRACT Objective: to identify an optimal combination of sweet, coffee and chocolate flavors to maximize consumer liking for the sensory attributes of a milkshake-type drink formulated with residual grain from the amaranth popping process. Design / methodology / research: 9 mixtures with refined sugar, soluble coffee and cocoa were formulated, varying their percentages in the simplex coordinate system. A milkshake-type beverage was formulated with residual grain from amaranth popping process and mixtures of sugar, coffee and cocoa as flavoring ingredients. A consumer study was carried out to identify the optimal flavor mix maximizing consumer liking, acceptability and purchase intention. Results: Regarding overall liking, favorable reactions were observed with the formulations with higher sugar and cocoa content. Formulations F1, F2, and F7 were more liked by consumers. The formulations with high percentage of coffee and low sugar were the least pleasant, positioning F8 as the formulation with the least liking in terms of the general taste of the milkshake-type drink. Study limitations / implications: The results represent a segment of mostly young consumers (81%) between 18 and 24 years old. Recommendations / conclusions: Consumers showed interest in the developed drink, since they tend to consume a drink in the morning. Regarding the formulations, there is a significant difference, largely derived from the sugar level in them. The use of flavorings is a viable strategy for the development of milkshake-type beverages formulated with residual grain from the popping of amaranth and to harness the benefits of this grain to human nutrition.Objective: To identify an optimal combination of sweet, coffee, and chocolate flavors to maximize liking of sensory attributes in a beverage formulated with residual grain from amaranth popping. Design/Methodology/Approach: We evaluated nine mixtures formulated with refined sucrose, instant coffee, and cocoa powder. Formulations were plotted in the simplex coordinate system. We prepared a milkshake-like beverage using residual grain from the amaranth popping process (RGAPP) as base. Sucrose, coffee, and cocoa were used as flavoring agents. We conducted a consumer study to identify the optimal mixture that maximized liking, acceptability, and purchase intent. Results: When testing the overall liking of the prepared milkshake-like product, we observed favorable reactions to those formulations that contained more sucrose and cocoa powder. Consumers found formulations 1 (30% coffee and 70% sucrose), 2 (70% sucrose and 30% cocoa powder), and 7 (30% sucrose and 70% cocoa powder) tastier than the others. The formulations with high coffee and low sucrose content were the least liked.  Formulation 8 (70% coffee and 30% cocoa powder) had the lowest overall liking score for the milkshake-like beverage. Study Limitations/Implications: The results represent a segment of mostly young consumers (81%), between 18 and 24 years old. Recommendations/Conclusions: Consumers showed interest in the developed products as they usually drink different kinds of beverages in the morning. There was a significant difference between formulations, mainly due to the different levels of sucrose. The use of flavorings is a viable strategy for the development of milkshake-like beverages formulated with residual grain from the amaranth popping process aimed to harness the benefits that this ingredient can offer to human nutrition

    Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration

    Get PDF
    We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart (Δg = 0.17 ± 0.03 mag, Δr = 0.14 ± 0.02 mag, Δi = 0.10 ± 0.03 mag) over the course of only 80 minutes of observations obtained ∼35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ∼59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a "blue kilonova" relatively free of lanthanides.Fil: Díaz, Mario Claudio. University of Texas; Estados UnidosFil: Macri, Lucas M.. Texas A&M University; Estados UnidosFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Mendes de Oliveira, C.. Universidade de Sao Paulo; BrasilFil: Nilo Castellon, Jose Luis Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad de La Serena; ChileFil: Ribeiro, T.. Universidade Federal de Sergipe; BrasilFil: Sánchez, Bruno Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Schoenell, W.. Universidade de Sao Paulo; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Abramo, L. R.. Universidade Federal de Santa Catarina; Brasil. Universidade de Sao Paulo; BrasilFil: Akras, S.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Alcaniz, J. S.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Artola, R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Beroiz, Martin Isidro Ramon. University of Texas; Estados UnidosFil: Bonoli, S.. Centro de Estudios de Física del Cosmos de Aragón; EspañaFil: Cabral, Juan Bautista. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Camuccio, R.. University of Texas; Estados UnidosFil: Castillo, M.. University of Texas; Estados UnidosFil: Chavushyan, Vahram. Instituto Nacional de Astrofísica, Óptica y Electrónica; MéxicoFil: Coelho, P.. Universidade de Sao Paulo; BrasilFil: Colazo, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Costa Duarte, M. V.. Universidade de Sao Paulo; BrasilFil: Cuevas Larenas, H.. Universidad de La Serena; ChileFil: DePoy, D. L.. Texas A&M University; Estados UnidosFil: Dominguez Romero, Mariano Javier de Leon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Dultzin, Debora. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Fernández, D.. Pontificia Universidad Católica de Chile; ChileFil: García, J.. University of Texas; Estados UnidosFil: Girardini, C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Goncalves Gama, Diana Renata. Universidade Federal do Rio de Janeiro; BrasilFil: Gonçalves, T. S.. Universidade Federal do Rio de Janeiro; BrasilFil: Gurovich, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Jiménez Teja, Y.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Lares, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Lopes de Oliveira, R.. Universidade Federal de Sergipe; Brasil. National Aeronautics and Space Administration; Estados UnidosFil: López Cruz, Omar. Instituto Nacional de Astrofísica, Óptica y Electrónica; MéxicoFil: Marshall, J. L.. Texas A&M University; Estados UnidosFil: Melia, R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Molino, A.. Universidade de Sao Paulo; BrasilFil: Padilla, Nelson. Pontificia Universidad Católica de Chile; ChileFil: Peñuela, T.. University of Texas; Estados Unidos. Ludwig Maximilian Universität Munich; AlemaniaFil: Placco, V. M.. University of Notre Dame; Estados Unidos. Center for the Evolution of the Elements. Joint Institute for Nuclear Astrophysics; Estados UnidosFil: Quiñones, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Rivera, A. Ramírez. Universidad de La Serena; ChileFil: Renzi, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Riguccini, L.. Universidade Federal do Rio de Janeiro; BrasilFil: Ríos López, Emmanuel. Instituto Nacional de Astrofísica, Óptica y Electrónica; MéxicoFil: Rodriguez, Horacio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Sampedro, L.. Universidade de Sao Paulo; BrasilFil: Schneiter, Ernesto Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Sodré, Laerte. Universidade de Sao Paulo; BrasilFil: Starck Cuffini, Manuel Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Torres Flores, S.. Universidad de La Serena; ChileFil: Tornatore, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Zadrożny, A.. University of Texas; Estados Unido

    BJS commission on surgery and perioperative care post-COVID-19

    No full text
    Background: Coronavirus disease 2019 (COVID-19) was declared a pandemic by the WHO on 11 March 2020 and global surgical practice was compromised. This Commission aimed to document and reflect on the changes seen in the surgical environment during the pandemic, by reviewing colleagues experiences and published evidence. Methods: In late 2020, BJS contacted colleagues across the global surgical community and asked them to describe how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had affected their practice. In addition to this, the Commission undertook a literature review on the impact of COVID-19 on surgery and perioperative care. A thematic analysis was performed to identify the issues most frequently encountered by the correspondents, as well as the solutions and ideas suggested to address them. Results: BJS received communications for this Commission from leading clinicians and academics across a variety of surgical specialties in every inhabited continent. The responses from all over the world provided insights into multiple facets of surgical practice from a governmental level to individual clinical practice and training. Conclusion: The COVID-19 pandemic has uncovered a variety of problems in healthcare systems, including negative impacts on surgical practice. Global surgical multidisciplinary teams are working collaboratively to address research questions about the future of surgery in the post-COVID-19 era. The COVID-19 pandemic is severely damaging surgical training. The establishment of a multidisciplinary ethics committee should be encouraged at all surgical oncology centres. Innovative leadership and collaboration is vital in the post-COVID-19 era

    Global burden of 87 risk factors in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation.Peer reviewe

    Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation
    corecore