377 research outputs found

    Near-wall velocity measurements by Particle-Shadow-Tracking

    Get PDF
    We report a new method to measure the velocity of a fluid in the vicinity of a wall. The method, that we call Particle-Shadow Tracking (PST), simply consists in seeding the fluid with a small number of fine tracer particles of density close to that of the fluid. The position of each particle and of its shadow on the wall are then tracked simultaneously, allowing one to accurately determine the distance separating tracers from the wall and therefore to extract the velocity field. We present an application of the method to the determination of the velocity profile inside a laminar density current flowing along an inclined plane

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Search for the standard model Higgs boson at LEP

    Get PDF

    Laterality and Flight: Concurrent Tests of Side-Bias and Optimality in Flying Tree Swallows

    Get PDF
    Behavioural side-bias occurs in many vertebrates, including birds as a result of hemispheric specialization and can be advantageous by improving response times to sudden stimuli and efficiency in multi-tasking. However, behavioural side-bias can lead to morphological asymmetries resulting in reduced performance for specific activities. For flying animals, wing asymmetry is particularly costly and it is unclear if behavioural side-biases will be expressed in flight; the benefits of quick response time afforded by side-biases must be balanced against the costs of less efficient flight due to the morphological asymmetry side-biases may incur. Thus, competing constraints could lead to context-dependent expression or suppression of side-bias in flight. In repeated flight trials through an outdoor tunnel with obstacles, tree swallows (Tachycineta bicolor) preferred larger openings, but we did not detect either individual or population-level side-biases. Thus, while observed behavioural side-biases during substrate-foraging and copulation are common in birds, we did not see such side-bias expressed in obstacle avoidance behaviour in flight. This finding highlights the importance of behavioural context for investigations of side-bias and hemispheric laterality and suggests both proximate and ultimate trade-offs between species-specific cognitive ecology and flight biomechanics

    Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum

    Get PDF
    This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan-DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase with salt and pH from 243 nm in water to 1244 nm in PBS at pH 7.4 and aggregation in presence of 10% serum. The cellular uptake of complexes into HEK 293 cells assessed by flow cytometry and confocal fluorescent imaging was found to increase at lower pH and serum. Based on these data, new methodology were tested and high levels of transfection (>40%) were achieved when transfection was initiated at pH 6.5 with 10% serum for 8-24 h to maximize uptake and then the media was changed to pH 7.4 with 10% serum for an additional 24-40 h period. Cytotoxicity of chitosan/DNA complexes was also considerably lower than Lipofectamine. Our study demonstrates that the evaluation of the influence of important parameters in the methodology of transfection enables the understanding of crucial physicochemical and biological mechanisms which allows for the design of methodologies maximising transgene expression

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A New Method for the Characterization of Strain-Specific Conformational Stability of Protease-Sensitive and Protease-Resistant PrPSc

    Get PDF
    Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural hosts, such as humans and sheep

    In Vitro Amplification of Misfolded Prion Protein Using Lysate of Cultured Cells

    Get PDF
    Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA

    AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

    Get PDF
    The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na+) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na+ and K+ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K+ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na+ over K+ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na+ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na+ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na+ channel transport properties

    Mechanism-Based Screen Establishes Signalling Framework for DNA Damage-Associated G1 Checkpoint Response

    Get PDF
    DNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized. Although the core molecular functions that execute different damage activated checkpoints are known, the signals that control checkpoint activation are far from understood. We used a kinome-spanning RNA interference screen to delineate signalling required for radiation-mediated retinoblastoma protein activation, the recognized executor of G1 checkpoint control. Our results corroborate the involvement of the p53 tumour suppressor (TP53) and its downstream targets p21CIP1/WAF1 but infer lack of involvement of canonical double strand break (DSB) recognition known for its role in activating TP53 in damaged cells. Instead our results predict signalling involving the known TP53 phosphorylating kinase PRPK/TP53RK and the JNK/p38MAPK activating kinase STK4/MST1, both hitherto unrecognised for their contribution to DNA damage G1 checkpoint signalling. Our results further predict a network topology whereby induction of p21CIP1/WAF1 is required but not sufficient to elicit checkpoint activation. Our experiments document a role of the kinases identified in radiation protection proposing their pharmacological inhibition as a potential strategy to increase radiation sensitivity in proliferating cancer cells
    corecore