114 research outputs found

    Multipurpose silicon photonics signal processor core

    Full text link
    [EN] Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip, I.G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship.Pérez-López, D.; Gasulla Mestre, I.; Crudgington, L.; Thomson, DJ.; Khokhar, AZ.; Li, K.; Cao, W.... (2017). Multipurpose silicon photonics signal processor core. Nature Communications. 8(1925):1-9. https://doi.org/10.1038/s41467-017-00714-1S1981925Doerr, C. R. & Okamoto, K. Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006).Coldren, L. A. et al. High performance InP-based photonic ICs—A tutorial. J. Lightw. Technol 29, 554–570 (2011).Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).Bogaerts, W. Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Leinse, A. et al. TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013).Kish, F. et al. From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013).Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).Sacher, W. et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015).Asghari, M. Silicon photonics: A low cost integration platform for datacom and telecom applications. In OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 1–10 (San Diego, USA, 2008).Melati, D. et al. Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission. Opt. Lett. 42, 342–345 (2017).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Technology focus on microwave photonics. Nat. Photon. 5, 723 (2011).Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).Heideman, R. G. TriPleX™-based integrated optical ring resonators for lab-ona-chip-and environmental detection. IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).Estevez, M. C., Alvarez, M. & Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).Almeida, V. R., Barrios, C. A., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Hill, M. T. et al. A fast low power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015).Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).Assefa, S. et al. in Optical Fibre Communication Conference OMM6, https://www.osapublishing.org/abstract.cfm?uri=OFC-2011-OMM6 (Optical Society of America, 2011).Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. N. J. Phys. 14, 045003 (2012).Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).Muñoz, P. et al. in 16th International Conference on Transparent Optical Networks (ICTON), 1–4 (Graz, 2014).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016).Graydon, O. Birth of the programmable optical chip. Nat. Photon 10, 1 (2016).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: The programmable processor. Nat. Photon. 10, 6–8 (2016).Pérez, D., Gasulla., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach. 1st edn. (Wiley, 1999).Jinguji, K. Synthesis of coherent two-port lattice-form optical delay-line circuit. J. Lightw. Technol. 13, 73–82 (1995).Jinguji, K. Synthesis of coherent two-port Optical delay-line circuit with ring waveguides. J. Lightw. Technol. 14, 1882–1898 (1996).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Yariv, A. et al. Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).Hebner, J. E. et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1665–1673 (2004).Fandiño, J. S. et al. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012).Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 1st edn. (Cambridge University Press, 2001).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014)

    Iodine-125 brachytherapy for brain tumours - a review

    Get PDF
    Iodine-125 brachytherapy has been applied to brain tumours since 1979. Even though the physical and biological characteristics make these implants particularly attractive for minimal invasive treatment, the place for stereotactic brachytherapy is still poorly defined

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of B_{s}^{0} meson production in pp and PbPb collisions at \sqrt{SNN}

    Get PDF
    The production cross sections of B_{s}^{0} mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B_{s}^{0}→J/ψϕ→μ^{+}μ^{−}K^{+}K^{−} at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range |y|<2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_{T}) of the B_{s}^{0} mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_{s}^{0} production yield in PbPb collisions is measured in two p_{T} intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5±0.6(stat)±0.5(syst) for 7–15 GeV/c, and 0.87±0.30(stat)±0.17(syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_{s}^{0} results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B+ mesons

    Measurement of the tt¯ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV

    Get PDF
    A measurement of the top quark–antiquark pair production cross section σtt¯ in proton–proton collisions at a centre-of-mass energy of 13TeV is presented. The data correspond to an integrated luminosity of 35.9fb−1, recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e ± μ ∓, μ+μ−, e+e−) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of mMCt=172.5GeV the fit yields a measured cross section σtt¯=803±2(stat)±25(syst)±20(lumi)pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of mMCt=172.33±0.14(stat)+0.66−0.72(syst)GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions

    Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at \sqrt{s} = 13 TeV

    Get PDF
    A search for nonresonant excesses in the invariant mass spectra of electron and muon pairs is presented. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment in 2016, corresponding to a total integrated luminosity of 36 fb^{-1}. No significant deviation from the standard model is observed. Limits are set at 95% confidence level on energy scales for two general classes of nonresonant models. For a class of fermion contact interaction models, lower limits ranging from 20 to 32 TeV are set on the characteristic compositeness scale Λ. For the Arkani-Hamed, Dimopoulos, and Dvali model of large extra dimensions, the first results in the dilepton final state at 13 TeV are reported, and values of the ultraviolet cutoff parameter Λ_{T} below 6.9 TeV are excluded. A combination with recent CMS diphoton results improves this exclusion to Λ_{T} below 7.7 TeV, providing the most sensitive limits to date in nonhadronic final states

    Measurement of the WZ production cross section in pp collisions at root s=13 Tev

    Get PDF
    Peer reviewe

    Relative Modification of Prompt psi(2S) and J/psi Yields from pp to PbPb Collisions at root(S)(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for the production of W^{\pm} W^{\pm} W^{\mp} events at \sqrt{s} = 13 TeV

    Get PDF
    A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb^{-1}. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W^{\pm} W^{\pm} W^{\mp} production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34_{-0.34}^{+0.62}. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles

    Measurement of the energy density as a function of pseudorapidity in proton-proton collisions at root \sqrt{s} = 13 TeV

    Get PDF
    A measurement of the energy density in proton–proton collisions at a centre-of-mass energy of s√=13 TeV is presented. The data have been recorded with the CMS experiment at the LHC during low luminosity operations in 2015. The energy density is studied as a function of pseudorapidity in the ranges −6.6<η<−5.2 and 3.15<|η|<5.20. The results are compared with the predictions of several models. All the models considered suggest a different shape of the pseudorapidity dependence compared to that observed in the data. A comparison with LHC proton–proton collision data at s√=0.9 and 7TeV confirms the compatibility of the data with the hypothesis of limiting fragmentation
    corecore