148 research outputs found

    The Importance of Incorporating At-Home Testing Into SARS-CoV-2 Point Prevalence Estimates: Findings From a US National Cohort, February 2022

    Get PDF
    Background: Passive, case-based surveillance underestimates the true extent of active infections in the population due to undiagnosed and untested cases, the exclusion of probable cases diagnosed point-of-care rapid antigen tests, and the exclusive use of at-home rapid tests which are not reported as part of case-based surveillance. The extent in which COVID-19 surveillance may be underestimating the burden of infection is likely due to time-varying factors such as decreased test-seeking behaviors and increased access to and availability of at-home testing. Objective: The objective of this study is to estimate the prevalence of SARS-CoV-2 based on different definitions of a case to ascertain the extent to which cases of SARS-CoV-2 may be underestimated by case-based surveillance. Methods: A survey on COVID-19 exposure, infection, and testing was administered to calculate point prevalence of SARS-CoV-2 among a diverse sample of cohort adults from February 8, 2022, to February 22, 2022. Three-point prevalence estimates were calculated among the cohort, as follows: (1) proportion positives based on polymerase chain reaction (PCR) and rapid antigen tests; (2) proportion positives based on testing exclusively with rapid at-home tests; and (3) proportion of probable undiagnosed cases. Test positivity and prevalence differences across booster status were also examined. Results: Among a cohort of 4328, there were a total of 644 (14.9%) cases. The point prevalence estimate based on PCR or rapid antigen tests was 5.5% (95% CI 4.8%-6.2%), 3.7% (95% CI 3.1%-4.2%) based on at-home rapid tests, and 5.7% (95% CI 5.0%-6.4%) based on the case definition of a probable case. The total point prevalence across all definitions was 14.9% (95% CI 13.8%-16.0%). The percent positivity among PCR or rapid tests was 50.2%. No statistically significant differences were observed in prevalence between participants with a COVID-19 booster compared to fully vaccinated and nonboosted participants except among exclusive at-home rapid testers. Conclusions: Our findings suggest a substantial number of cases were missed by case-based surveillance systems during the Omicron B.1.1.529 surge, when at-home testing was common. Point prevalence surveys may be a rapid tool to be used to understand SARS-CoV-2 prevalence and would be especially important during case surges to measure the scope and spread of active infections in the population

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Phenomenological MSSM interpretation of CMS searches in pp collisions at √s=7 and 8 TeV

    Get PDF
    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected at root s = 7 and 8 TeV and have integrated luminosities of 5.0 fb(-1) and 19.5 fb(-1), respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. The nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF

    Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state

    Get PDF
    A search for single production of vector-like top quark partners (T) decaying into a Higgs boson and a top quark is performed using data from pp collisions at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 fb−1. The top quark decay includes an electron or a muon while the Higgs boson decays into a pair of b quarks. No significant excess over standard model backgrounds is observed. Exclusion limits on the product of the production cross section and the branching fraction are derived in the T quark mass range 700 to 1800 GeV. For a mass of 1000 GeV, values of the product of the production cross section and the branching fraction greater than 0.8 and 0.7 pb are excluded at 95% confidence level, assuming left- and right-handed coupling of the T quark to standard model particles, respectively. This is the first analysis setting exclusion limits on the cross section of singly produced vector-like T quarks at a centre-of-mass energy of 13 TeV
    corecore