929 research outputs found
Dynamical modelling of the elliptical galaxy NGC 2974
In this paper we analyse the relations between a previously described oblate
Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974,
and obtain the length and velocity scales for a relevant elliptical galaxy
model. We then derive the finite total mass of the model from these scales, and
finally find a good fit of an isotropic oblate Jaffe model by using the
Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC
2974. The model is also used to predict the total luminous mass of NGC 2974,
assuming that the influence of dark matter in this galaxy on the image,
ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible
within the central region, of radius Comment: 7 figure
Constraints on Low-Mass WIMP Interactions on 19F from PICASSO
Recent results from the PICASSO dark matter search experiment at SNOLAB are
reported. These results were obtained using a subset of 10 detectors with a
total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low
backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be
obtained which results in an increased sensitivity to interactions from Weakly
Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark
matter signal was found. Best exclusion limits in the spin dependent sector
were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of
sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the
low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections
larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.
Structural and doping effects in the half-metallic double perovskite CrWO
he structural, transport, magnetic and optical properties of the double
perovskite CrWO with have been studied. By
varying the alkaline earth ion on the site, the influence of steric effects
on the Curie temperature and the saturation magnetization has been
determined. A maximum K was found for SrCrWO having an almost
undistorted perovskite structure with a tolerance factor . For
CaCrWO and BaCrWO structural changes result in a strong
reduction of . Our study strongly suggests that for the double perovskites
in general an optimum is achieved only for , that is, for an
undistorted perovskite structure. Electron doping in SrCrWO by a
partial substitution of Sr by La was found to reduce both
and the saturation magnetization . The reduction of could be
attributed both to band structure effects and the Cr/W antisites induced by
doping. Band structure calculations for SrCrWO predict an energy gap in
the spin-up band, but a finite density of states for the spin-down band. The
predictions of the band structure calculation are consistent with our optical
measurements. Our experimental results support the presence of a kinetic energy
driven mechanism in CrWO, where ferromagnetism is stabilized by a
hybridization of states of the nonmagnetic W-site positioned in between the
high spin Cr-sites.Comment: 14 pages, 10 figure
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
The Milky Way Bulge: Observed properties and a comparison to external galaxies
The Milky Way bulge offers a unique opportunity to investigate in detail the
role that different processes such as dynamical instabilities, hierarchical
merging, and dissipational collapse may have played in the history of the
Galaxy formation and evolution based on its resolved stellar population
properties. Large observation programmes and surveys of the bulge are providing
for the first time a look into the global view of the Milky Way bulge that can
be compared with the bulges of other galaxies, and be used as a template for
detailed comparison with models. The Milky Way has been shown to have a
box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an
additional spheroidal component. In this review we summarise the global
chemical abundances, kinematics and structural properties that allow us to
disentangle these multiple components and provide constraints to understand
their origin. The investigation of both detailed and global properties of the
bulge now provide us with the opportunity to characterise the bulge as observed
in models, and to place the mixed component bulge scenario in the general
context of external galaxies. When writing this review, we considered the
perspectives of researchers working with the Milky Way and researchers working
with external galaxies. It is an attempt to approach both communities for a
fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
- âŚ