305 research outputs found
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
The NEXT White (NEW) detector
Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation
Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut
Fish larval development, not least the spectacular
process of flatfish metamorphosis, appears to be
under complex endocrine control, many aspects of
which are still not fully elucidated. In order to obtain
data on the functional development of two major
endocrine glands, the pituitary and the thyroid, during
flatfish metamorphosis, histology, immunohistochemistry
and in situ hybridization techniques were applied on
larvae of the Atlantic halibut (Hippoglossus hippoglossus),
a large, marine flatfish species, from hatching
through metamorphosis. The material was obtained
from a commercial hatchery. Larval age is defined as
day-degrees (D =accumulated daily temperature from
hatching). Sporadic thyroid follicles are first detected in
larvae at 142 D (27 days post-hatch), prior to the
completion of yolk sack absorption. Both the number
and activity of the follicles increase markedly after yolk
sack absorption and continue to do so during subsequent
development. The larval triiodothyronine (T3)
and thyroxine (T4) content increases, subsequent to yolk
absorption, and coincides with the proliferation of thyroid
follicles. A second increase of both T3 and T4 occurs
around the start of metamorphosis and the T3 content
further increases at the metamorphic climax. Overall,
the T3 content is lower than T4. The pituitary gland can
first be distinguished as a separate organ at the yolk sack
stage. During subsequent development, the gland becomes
more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia
(PI). The first sporadic endocrine pituitary cells are observed
at the yolk sack stage, somatotrophs (growth
hormone producing cells) and somatolactotrophs (somatolactin
producing cells) are first observed at 121 D
(23 days post-hatch), and lactotrophs (prolactin producing
cells) at 134 D (25 days post-hatch). Scarce
thyrotrophs are evident after detection of the first thyroid
follicles (142 D ), but coincident with a phase in
which follicle number and activity increase (260 D ).
The somatotrophs are clustered in the medium ventral
region of the PD, lactotrophs in the anterior part of the
PD and somatolactotrophs are scattered in the mid and
posterior region of the pituitary. At around 600 D ,
coinciding with the start of metamorphosis, somatolactotrophs
are restricted to the interdigitating tissue of the
NH. During larval development, the pituitary endocrine
cells become more numerous. The present data on thyroid
development support the notion that thyroid hormones
may play a significant role in Atlantic halibut
metamorphosis. The time of appearance and the subsequent
proliferation of pituitary somatotrophs, lactotrophs,
somatolactotrophs and thyrotrophs indicate at
which stages of larval development and metamorphosis
these endocrine cells may start to play active regulatory
roles.This work has been carried out within the
projects ‘‘Endocrine Control as a Determinant of Larval Quality in
Fish Aquaculture’’ (CT-96-1422) and ‘‘Arrested development: The
Molecular and Endocrine Basis of Flatfish Metamorphosis’’
(Q5RS-2002-01192), with financial support from the Commission
of the European Communities. However, it does not necessarily
reflect the Commission’s views and in no way anticipates its future
policy in this area. This project was further supported by the
Swedish Council for Agricultural and Forestry Research and Pluriannual
funding to CCMAR by the Portuguese Science and
Technology Council
Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset
Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson’s disease (PD). Yet the role that
mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we
comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the
scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We
calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our
primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the
secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional
genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial functionassociated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes
are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting
mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early
stage of PD
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2 M⊙ and 84.4−11.1+15.8 M⊙ and range in distance between 320−110+120 and 2840−1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840 Gpc−3 y−1 for binary neutron stars and 9.7−101 Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc−3 y−1
Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)
Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
A joint fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs
We present results from offline searches of Fermi Gamma-ray Burst Monitor (GBM) data for gamma-ray transients coincident with the compact binary coalescences observed by the gravitational-wave (GW) detectors Advanced LIGO and Advanced Virgo during their first and second observing runs. In particular, we perform follow-up for both confirmed events and low significance candidates reported in the LIGO/Virgo catalog GWTC-1. We search for temporal coincidences between these GW signals and GBM-triggered gamma-ray bursts (GRBs). We also use the GBM Untargeted and Targeted subthreshold searches to find coincident gamma-rays below the onboard triggering threshold. This work implements a refined statistical approach by incorporating GW astrophysical source probabilities and GBM visibilities of LIGO/Virgo sky localizations to search for cumulative signatures of coincident subthreshold gamma-rays. All search methods recover the short gamma-ray burst GRB 170817A occurring ∼1.7 s after the binary neutron-star merger GW170817. We also present results from a new search seeking GBM counterparts to LIGO single-interferometer triggers. This search finds a candidate joint event, but given the nature of the GBM signal and localization, as well as the high joint false alarm rate of 1.1 10-6 Hz, we do not consider it an astrophysical association. We find no additional coincidences
- …