1,871 research outputs found

    Stable and metastable patterns in chromonic nematic liquid crystal droplets forced with static and dynamic magnetic fields

    Get PDF
    Spherical confinement of nematic liquid crystals leads to the formation of equilibrium director field configurations that include point and line defects. Driving these materials with flows or dynamic fields often results in the formation of alternative metastable states. In this article, we study the effect of magnetic field alignment, both under static and dynamic conditions, of nematic gems (nematic droplets in coexistence with the isotropic phase) and emulsified nematic droplets of a lyotropic chromonic liquid crystal. We use a custom polarizing optical microscopy assembly that incorporates a permanent magnet whose strength and orientation can be dynamically changed. By comparing simulated optical patterns with microscopy images, we measure an equilibrium twisted bipolar pattern within nematic gems that is only marginally different from the one reported for emulsified droplets. Both systems evolve to concentric configurations upon application of a static magnetic field, but behave very differently when the field is rotated. While the concentric texture within the emulsified droplets is preserved and only displays asynchronous oscillations for high rotating speeds, the nematic gems transform into a metastable untwisted bipolar configuration that is memorized by the system when the field is removed. Our results demonstrate the importance of boundary conditions in determining the dynamic behavior of confined liquid crystals even for configurations that share similar equilibrium bulk structures

    Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids

    Get PDF
    An alternative metal-free soft procedure for the preparation of dipyrrins from F-BODIPYs is reported. The new method makes possible to obtain certain dipyrrin derivatives that were unaccessible from F-BODIPYs to date. To demonstrate the ability of the new procedure, dipyrrins having highly reactive groups, such as chloro, cyano or acetoxyl, have been easily obtained from the corresponding F-BODIPY, which shows the synthetic utility of the reported methodology

    Nuclear Translocation of b-Catenin during Mesenchymal Stem Cells Differentiation into Hepatocytes Is Associated with a Tumoral Phenotype

    Get PDF
    Wnt/b-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/b-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, b-catenin nuclear translocation, up-regulation of genes related to the Wnt/b-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/b-catenin inactivation. Hepatocytes with nuclear translocation of b-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase b-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin b-chain were downregulated in this protocol. In conclusion, our results suggest that activation of the Wnt/b-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotyp

    The unusual protoplanetary disk around the T Tauri star ET Cha

    Get PDF
    We present new continuum and line observations, along with modelling, of the faint (6-8) Myr old T Tauri star ET Cha belonging to the eta Chamaeleontis cluster. We have acquired HERSCHEL/PACS photometric fluxes at 70 mic and 160 mic, as well as a detection of the [OI] 63 mic fine-structure line in emission, and derived upper limits for some other far-IR OI, CII, CO and o-H2O lines. The HERSCHEL data is complemented by new ANDICAM B-K photometry, new HST/COS and HST/STIS UV-observations, a non-detection of CO J=3-2 with APEX, re-analysis of a UCLES high-resolution optical spectrum showing forbidden emission lines like [OI] 6300A, [SII] 6731A and 6716A, and [NII] 6583A, and a compilation of existing broad-band photometric data. We used the thermo-chemical disk code ProDiMo and the Monte-Carlo radiative transfer code MCFOST to model the protoplanetary disk around ET Cha. Based on these models we can determine the disk dust mass Mdust = (2.E-8 - 5.E-8) Msun, whereas the total disk gas mass is found to be only little constrained, Mgas = (5.E-5 - 3.E-3) Msun. In the models, the disk extends from 0.022 AU (just outside of the co-rotation radius) to only about 10 AU. Larger disks are found to be inconsistent with the CO J=3-2 non-detection. The low velocity component of the [OI] 6300A emission line is consistent with being emitted from the inner disk. The model can also reproduce the line flux of H2 v=1-0 S(1) at 2.122 mic. An additional high-velocity component of the [OI] 6300A emission line, however, points to the existence of an additional jet/outflow of low velocity (40 - 65) km/s with mass loss rate ~1.E-9 Msun/yr. In relation to our low estimations of the disk mass, such a mass loss rate suggests a disk lifetime of only ~(0.05 - 3) Myr, substantially shorter than the cluster age. The evolutionary state of this unusual protoplanetary disk is discussed.Comment: accepted by Astronomy & Astrophysics (18 pages, 11 figures and 7 tables). Additional 9-page appendix with 6 figures, 3 tables and 37 equation

    Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics

    Get PDF
    Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues

    A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared

    Get PDF
    Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&

    Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf"

    Get PDF
    [EN] Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA.cm(-2), leading to 60 mL.cm(-2).day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H-2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf' has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 +/- 0.25) mL.cm(-2).day(-1).We acknowledge support by projects from Ministerio de Economia y Competitividad (MINECO) of Spain (Consolider HOPE CSD2007-00007, MAT2010-19827), Generalitat Valenciana (PROMETEO/2009/058 and Project ISIC/2012/008 "Institute of Nanotechnologies for Clean Energies"), and Fundacio Bancaixa (P1.1B2011-50). S.G. acknowledges support by MINECO of Spain under the Ramon y Cajal programme. The SCIC of the University Jaume I de Castello is also acknowledged for the gas analysis measurements. C.S. acknowledges the POSDRU/89/1.5/S/58852 Project "Postdoctoral programme for training scientific researchers", co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. We want to acknowledge Prof. J. Bisquert for the fruitful discussions related to this manuscript.Trevisan, R.; Rodenas, P.; González-Pedro, V.; Sima, C.; Sánchez, RS.; Barea, EM.; Mora-Sero, I.... (2013). Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf". Journal of Physical Chemistry Letters. 4(1):141-146. https://doi.org/10.1021/jz301890mS1411464

    Sodium caseinate induces secretion of macrophage colony-stimulating factor from neutrophils

    Get PDF
    Abstract In this work we provide evidence that granulocytes produce macrophage colony-stimulating factor (M-CSF) in the band cell stage and secrete it upon sodium caseinate-mediated differentiation to polymorphonuclear cells. We identified M-CSF in an enriched population of myeloid band cells from murine bone marrow using a chromophorelabeled monoclonal anti-M-CSF antibody. An ELISA assay was then used to detect secreted M-CSF in culture supernatants of enriched band cells differentiated to mature neutrophils using sodium caseinate. Colony formation in vitro by the supernatants from differentiating band cells was blocked by anti-M-CSF, thus suggesting that this factor is the only one responsible for this activity. Our data imply that casein can modulate hematopoiesis possibly via M-CSF production. Finally we discuss the possibility whether this M-CSF in concert with G-CSF could establish a cellular communication network between macrophages and granulocytes allowing them to simultaneously arrive at the inflammatory site
    corecore