143 research outputs found

    Models of hydrothermal circulation within 106 Ma seafloor : constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11001, doi:10.1029/2005GC001013.Heat flow measurements colocated with seismic data across 106 Ma seafloor of the Madeira Abyssal Plain (MAP) reveal variations in seafloor heat flow of ±10–20% that are positively correlated with basement relief buried below thick sediments. Conductive finite element models of sediments and upper basement using reasonable thermal properties are capable of generating the observed positive correlation between basement relief and seafloor heat flow, but with variability of just ±4–8%. Conductive simulations using a high Nusselt number (Nu) proxy for vigorous local convection suggest that Nu = 2–10 within the upper 600–100 m of basement, respectively, is sufficient to achieve a reasonable match to observations. These Nu values are much lower than those inferred on younger ridge flanks where greater thermal homogeneity is achieved in upper basement. Fully coupled simulations suggest that permeability below the MAP is on the order of 10−12–10−10 m2 within the upper 300–600 m of basement. This permeability range is broadly consistent with values determined by single-hole experiments and from modeling studies at other (mostly younger) sites. We infer that the reduction in basement permeability with age that is thought to occur within younger seafloor may slow considerably within older seafloor, helping hydrothermal convection to continue as plates age.Funding in support of this work was provided by the U.S. National Science Foundation (OCE-0001892), the U.S. Science Support Program for IODP (T301A7), and the Institute for Geophysics and Planetary Physics/Los Alamos National Laboratory (1317)

    Heat flow from the Southeast Indian Ridge flanks between 80°E and 140°E: Data review and analysis

    Get PDF
    International audienceWe analyze available heat flow data from the flanks of the Southeast Indian Ridge adjacent to or within the Australian-Antarctic Discordance (AAD), an area with patchy sediment cover and highly fractured seafloor as dissected by ridge- and fracture-parallel faults. The data set includes 23 new data points collected along a 14-Ma old isochron and 19 existing measurements from the 20- to 24-Ma old crust. Most sites of measurements exhibit low heat flux (from 2 to 50 mW m−2) with near-linear temperature-depth profiles except at a few sites, where recent bottom water temperature change may have caused nonlinearity toward the sediment surface. Because the igneous basement is expected to outcrop a short distance away from any measurement site, we hypothesize that horizontally channelized water circulation within the uppermost crust is the primary process for the widespread low heat flow values. The process may be further influenced by vertical fluid flow along numerous fault zones that crisscross the AAD seafloor. Systematic measurements along and across the fault zones of interest as well as seismic profiling for sediment distribution are required to confirm this possible, suspected effect

    Deep-sea corehead camera photography and piston coring

    Get PDF
    Cameras were mounted in a newly designed corehead of a piston corer and used to photograph coring operations during 36 stations on CHAIN cruise 75 and 28 stations on ATLANTIS II cruise 42. Through the analysis of these photographs, the deep-water operation of a piston corer during its descent, tripping, impact with the bottom, and ascent has been studied, providing information on the corer's stability, effectiveness in obtaining a bottom sample, and influence on the nearby sea-floor. Accurate determinations of the amount of penetration were possible, allowing comparisons to be made with the more indirect methods of determining penetration and with the length of core recovered. Sediment clouds produced by bottom currents were noticed in many of the bottom photographs. A number of suggestions are made for future piston coring operations. The corer descends with little rotation and swinging. Free-fall and penetration generally take place in less than 5 seconds, with a rotation of 20-60° and an increase of about 6° in vertical deviation. During penetration, the corer disturbs the surrounding sea floor, producing both mounds and depressions around the core barrels. While resting in the bottom, the corer is very stable although some wobbling does occur. Considerable rotation takes place during both pull-out and ascent; frequent sediment discharges from the piston corer occur. No consistent relationship was found between the amount of penetration and the length of core recovered, and thus with the degree of core shortening. Comparisons between piston and pilot cores indicate that the piston cores have been shortened and disturbed relative to the pilot cores, and that as much as a meter of the upper portion of the piston core has been lost. The position of the mud-mark appears to be a reliable indicator of the amount of penetration; estimates by extrapolation of the thermal gradient to the surface are less reliable. The vertical deviation of the corer in the bottom does not influence the amount of penetration. Stratigraphic dips in the recovered cores correspond poorly to this vertical deviation in the bottom.The National Science Foundation Grants GA-1077 and GA-1209 and submitted to the Office of Naval Research under Contract Nonr-4029(00); NR 260-101, and N00014-66-C0241; NR 083- 004

    Are 'hot spots' hot spots?

    Get PDF
    The term ‘hot spot’ emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a ‘normal’ mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ∼200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40–50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200–300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been built by volcanism distributed throughout hundreds, even thousand of kilometres, and as yet no unequivocal evidence has been produced that any of them have high temperature anomalies compared with average mantle temperature for the same (usually unknown) depth elsewhere. Critical investigation of the genesis processes of ‘anomalous’ volcanic regions would be encouraged if use of the term ‘hot spot’ were discontinued in favour of one that does not assume a postulated origin, but is a description of unequivocal, observed characteristics

    In-vivo X-ray Dark-Field Chest Radiography of a Pig

    Get PDF
    X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm²) of a living pig, acquired with clinically compatible parameters (40s scan time, approx. 80 μSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking

    Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica

    Get PDF
    At the Costa Rica margin along the Middle America Trench along‐strike variations in heat flow are well mapped. These variations can be understood in terms of either ventilated fluid flow, where exposed basement allows fluids to freely advect heat between the crustal aquifer and ocean, or insulated fluid flow where continuous sediment cover restricts heat advection to within the crustal aquifer. We model fluid flow within the subducting aquifer using Nusselt number approximations coupled with finite element models of subduction and explore its effect on temperatures along the subduction thrust. The sensitivity of these models to the initial thermal state of the plate and styles of fluid flow, either ventilated or insulated, is explored. Heat flow measurements on cool crust accreted at the East Pacific Rise are consistent with ventilated hydrothermal cooling that continues with subduction. These models yield much cooler temperatures than predicted from simulations initialized with conductive predictions and without hydrothermal circulation. Heat flow transects on warm crust accreted at the Cocos‐Nazca spreading center are consistent with models of insulated hydrothermal circulation that advects heat updip within the subducting crustal aquifer. Near the trench these models are warmer than conductive predictions and cooler than conductive predictions downdip of the trench. Comparisons between microseismicity and modeled isotherms suggest that the updip limit of microseismicity occurs at temperatures warmer than 100°C and that the downdip extent of microseismicity is bounded by the intersection of the subduction thrust with the base of the overriding crust

    The TAG Hydrothermal Site: Implications of Some Recent Investigations for Marine Hydrothermal Systems

    No full text
    corecore