136 research outputs found

    Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability

    Get PDF
    Purpose Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lungMRI protocol in COPD. Materials and Methods 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging),consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. Results Median global scores [10(Q1:8.00;Q3:16.00) vs. 11(Q1:6.00;Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (kappa = 0.86, 95% CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (kappa = 0.64-1.00),whereas the agreement for the diagnosis of dystelectasis/effusion (kappa = 0.42, 95% CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (kappa = 0.21, 95% CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). Conclusion Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials

    The TAM-TB Assay—A Promising TB Immune-Diagnostic Test With a Potential for Treatment Monitoring

    Get PDF
    Tuberculosis (TB) epidemiology is changing in Western and Central Europe due to the rise in immigration and refugees fleeing high-TB-burden areas of war and devastation. The change in local demography and the lack of sensitive and specific TB diagnostic and monitoring tools, especially for cases of childhood TB, leads to either missed cases or over-treatment of this group. Here we present a promising new diagnostic approach, the T cell activation marker (TAM)-TB assay, and its performance in a case of extra-pulmonary TB occurring in a 16 year old refugee from Afghanistan. This assay is based on the characterization of 3 activation markers (CD38, HLA-DR, and Ki67) and one maturation marker (CD27) on M. tuberculosis-specific CD4 T cells. It was performed at time-points TO (10 days), T1 (1 month), T2 (6 months), and T3 (12 months) post-treatment initiation. All markers were able to detect active tuberculosis (aTB) within this patient at T0 and reverted to a healthy/LTBI phenotype at the end of treatment. Tantalizingly, there was a clear trend toward the healthy/LTBI phenotype for the markers at T1 and T2, indicating a potential role in monitoring anti-TB treatment in the future. This assay may therefore contribute to improved TB diagnostic algorithms and TB treatment monitoring, potentially allowing for individualization of TB treatment duration in the future

    Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    Get PDF
    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative end-points beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (Delta T1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and Delta T1 were highly prevalent in the patient cohort. T1 and Delta T1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80;p&0.001), and with each other (r = 0.80;p< 0.001). In GOLD stages I and II Delta T1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45;p< 0.05), T1 (r = 0.52;p< 0.05) and perfusion abnormalities (r = 0.52;p< 0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i. v. contrast

    Long-Term Follow-Up Examination of the Internal Jugular Vein After Vessel-Sparing Implantation of a Hickman Catheter or Port Catheter

    Get PDF
    Introduction: Both a Hickman catheter (HC) and port catheter (Port) can be inserted either percutaneously by the Seldinger technique or by surgical venous cut-down. Catheters are inserted with a vessel-sparing technique when they are placed in the internal jugular vein (IJV) by venous cut-down. Although this technique is common, data are sparse regarding the vessel's state at long-term follow-up. This study was aimed at determining the flow pattern and constitution of the IJV after vessel-sparing implantation of an HC or Port and comparing the outcomes to those of implantation with the Seldinger technique.Methods: One hundred children (58 boys, 42 girls) between 33 days and 18 years of age who underwent a vessel-sparing implantation of an HC or Port in the IJV were prospectively included. All patients underwent surgical venous cut-down at a single institution. Patency and shape of the IJV were determined by ultrasound and categorized according to 2 possible outcomes: relevant alteration (including occlusion of the IJV) and no relevant alteration, with relevant alteration defined as changes that caused an altered flow pattern.Results: Median age was 6 years at the time of operation, and the median indwelling time of catheters was 271 days. Twenty-two of our patients (22%) showed relevant alterations. These changes included high-grade stenosis or lesion in 13 patients (13%) and occlusion in 9 patients (9%). There were no operation-associated complications, such as pneumothorax, hematopericardium, or accidental puncture of the carotid artery. Statistical analysis did not reveal any specific parameter as a risk factor for relevant structural abnormalities.Discussion: In a comparison of our data to the literature, venous cut-down showed an alteration rate of 26% and a patency rate of 85%, whereas the Seldinger technique was found to cause alteration in 15%, with a patency rate of 97% but a successful placement rate of only 90.3–91.6%.Conclusion: The indication for long-term catheter placement may determine which method is preferable. A child who is likely to need more catheters in the future might benefit from the Seldinger technique, since there is a higher chance of long-term patency of the vessel. A patient undergoing chemotherapy might benefit more from the surgical venous cut-down with less placement-associated complications

    Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Get PDF
    The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology

    Total Psoas Muscle Area as a Marker for Sarcopenia Is Related to Outcome in Children With Neuroblastoma

    Get PDF
    Background: Sarcopenia describes a generalized loss of skeletal muscle mass, strength, or function. Determined by measuring the total psoas muscle area (tPMA) on cross-sectional imaging, sarcopenia is an independent marker for poor post-surgical outcomes in adults and children. Children with cancer are at high risk for sarcopenia due to immobility, chemotherapy, and cachexia. We hypothesize that sarcopenic children with neuroblastoma are at higher risk for poor post-operative outcomes. Patients and Methods: Retrospective analysis of children with neuroblastoma ages 1–15 years who were treated at our hospital from 2008 to 2016 with follow-up through March 2021. Psoas muscle area (PMA) was measured from cross-sectional images, using computed tomography (CT) and magnetic resonance imaging (MRI) scans at lumbar disc levels L3-4 and L4-5. tPMA is the sum of the left and right PMA. Z-scores were calculated using age- and gender-specific reference values. Sarcopenia was defined as a tPMA z-score below −2. A correlation of tPMA z-scores and sarcopenia with clinical variables and outcome was performed. Results: One hundred and sixty-four children with workup for neuroblastoma were identified, and 101 children fulfilled inclusion criteria for further analysis, with a mean age of 3.92 years (SD 2.71 years). Mean tPMA z-score at L4-5 was −2.37 (SD 1.02). Correlation of tPMA z-score at L4-5 with weight-for-age z-score was moderate (r = 0.54; 95% CI, 0.38, 0.66). No association between sarcopenia and short-term outcome was observed. Sarcopenia had a sensitivity of 0.82 (95% CI, 0.62–0.93) and a specificity of 0.48 (95% CI 0.36–0.61) in predicting 5-year survival. In a multiple regression analysis, pre-operative sarcopenia, pre-operative chemotherapy in the NB2004 high-risk group, unfavorable tumor histology, and age at diagnosis were associated with 5-year survival after surgery, with hazard ratios of 4.18 (95% CI 1.01–17.26), 2.46 (95% CI 1.02–5.92), 2.39 (95% CI 1.03–5.54), and 1.01 (95% CI 1.00–1.03), respectively. Conclusion: In this study, the majority of children had low tPMA z-scores and sarcopenia was a risk factor for decreased 5-year survival in children with neuroblastoma. Therefore, we suggest measuring the tPMA from pre-surgical cross-sectional imaging as a biomarker for additional risk stratification in children with neuroblastoma

    Enhanced pneumothorax visualization in ICU patients using portable chest radiography

    Get PDF
    Objective Pneumothorax development can cause precipitous deterioration in ICU patients, therefore quick and accurate detection is vital. Portable chest radiography is commonly performed to exclude pneumothoraces but is hampered by supine patient position and overlying internal and external material. Also, the initial evaluation of the chest radiograph may be performed by a relatively inexperienced physician. Therefore, a tool that could significantly improve pneumothorax detection on portable radiography would be helpful in patient care. The aim of this study was to evaluate the clinical utility of novel enhancement software for pneumothorax detection in readers with varied clinical experience of detecting/excluding pneumothoraces on portable chest radiographs in ICU patients. Subjects and methods 206 portable ICU chest radiographs, 103 with pneumothoraces, were processed with and without enhancement software and reviewed by 5 readers who varied in reading experience. Images were grouped for different complexity levels. Results The mean AUC for pneumothorax detection increased for 4/5 readers from 0.846-0.957 to 0.88-0.971 with a largest improvement for the reader with least experience. No significant change was noted for the reader with the longest reading experience. The image complexity had no impact on the interpretation result. Conclusion Pneumothorax detection improves with novel enhancement software;the largest improvement is seen in less experienced readers

    Towards quantitative perfusion MRI of the lung in COPD: The problem of short-term repeatability

    Get PDF
    Purpose 4D perfusion magnetic resonance imaging (MRI) with intravenous injection of contrast agent allows for a radiation-free assessment of regional lung function. It is therefore a valuable method to monitor response to treatment in patients with chronic obstructive pulmonary disease (COPD). This study was designed to evaluate its potential for monitoring short-term response to hyperoxia in COPD patients. Materials and methods 19 prospectively enrolled COPD patients (median age 66y) underwent paired dynamic contrast-enhanced 4D perfusion MRI within 35min, first breathing 100% oxygen (injection 1, O-2) and then room air (injection 2, RA), which was repeated on two consecutive days (day 1 and 2). Post-processing software was employed to calculate mean transit time (MTT), pulmonary blood volume (PBV) and pulmonary blood flow (PBF), based on the indicator dilution theory, for the automatically segmented whole lung and 12 regions of equal volume. Results Comparing O-2 with RA conditions, PBF and PBV were found to be significantly lower at O-2, consistently on both days (p<10-8). Comparing day 2 to day 1, MTT was shorter by 0.59 +/- 0.63 s (p<10-8), PBF was higher by 22 +/- 80 ml/min/100ml (p<3.10-4), and PBV tended to be lower by 0.2 +/- 7.2 ml/100ml (p = 0.159) at both, RA and O-2, conditions. Conclusion The second injection (RA) yielded higher PBF and PBV, which apparently contradicts the established hypothesis that hyperoxia increases lung perfusion. Quantification of 4D perfusion MRI by current software approaches may thus be limited by residual circulating contrast agent in the short-term and even the next day
    corecore