1,701 research outputs found

    Práctica de desarrollo de interfaces hardware/software para la monitorización del estado de un PC

    Get PDF
    Este artículo presenta una práctica laboratorio impartida mediante una metodología de aprendizaje basado en proyectos (ABP) [1] para dotar de la capacidad de diseñar y desarrollar un monitor del estado de un ordenador, integrado en un sistema empotrado que se comunica con una aplicación de escritorio, a nuestros alumnos de la asignatura de Diseño de Microcontroladores (DM) en el contexto del Máster en Ingeniería de Computadores y Redes. Esta práctica abarca la comunicación Hardware/ Software entre un microcontrolador con un núcleo Cortex-M4 y una aplicación software escrita en lenguaje C# usando el entorno Visual Studio Community 2015 a través de puertos series virtuales (VCP). Esta práctica está enfocada como un proyecto que los alumnos han de ir realizando desde cero, avanzando mediante la consecución de hitos, hasta conseguir obtener un sistema final. El sistema a desarrollar se divide en dos partes, por un lado tenemos un PC con un sistema operativo de la familia Windows, en el que se construye una aplicación visual mediante Windows Forms, la cual obtiene información del sistema de forma periódica y la envía al microcontrolador mediante comandos usando el puerto serie (USB o comunicación Bluetooth). Por otro lado tenemos un microcontrolador de la familia STM32 que dispone de un display LCD ejecutando una plataforma completamente libre, .NET Micro Framework, la cual recibe a través del puerto serie la información obtenida gracias a la aplicación software del PC y la muestra en la pantalla, obteniendo así una herramienta de monitorización del PC sin tener que estar conectado físicamente a éste. El desarrollo de este tipo de proyectos se añade la dificultad de la necesidad del uso de diferentes herramientas para el desarrollo del firmware y del software en paralelo, de manera incremental, y enfocadas para ámbitos de uso muy distintos. Esta práctica ha tenido una gran acogida por parte de los alumnos, ya que les ha servido de ejemplo del desarrollo de firmware para un microcontrolador usando la plataforma .NET MF y de su comunicación con el PC por medio de una aplicación visual.This manuscript presents a practical laboratory session imparted using a project-based learning methodology (PBL) to provide the capacity of designing and developing a computer status monitoring device, integrated in an embedded system that communicates with a desktop software tool, to our students in the Computer Engineering Master’s Degree. This practice session encompasses Hardware/ Software communication between a microcontroller with a Cortex-M4 kernel and a desktop software application through virtual COM ports (VCP) written in C# using Visual Studio Community 2015. This lab session is focused as a project that students must be making from scratch by achieving and completing some milestones to obtain a final functional system. The project is divided into two different parts. First, we have a Windows PC where a visual software application that gathers information from the system and sends it periodically to the microcontroller (USB or Bluetooth) has to be built using Windows Forms. On the other hand, we have a microcontroller from the STM32 family that has a 2.4’ LCD display executing .NET Micro Framework that receives the information obtained from the PC through the serial port and displays it in the screen. This way, students create a computer status monitoring tool that does not need to be connected physically to it to receive the information. The development of this project is added to the need of using different tools for firmware and software development, focused to very different fields of use. This practice has been well received by the students, because it has served as an example of the firmware development for a microcontroller using the .NET MF platform as well as the communication between the PC and the microcontroller using a visual software application

    Self-binormal solutions of the Localized Induction Approximation: Singularity formation

    Full text link
    We investigate the formation of singularities in a self-similar form of regular solutions of the Localized Induction Approximation (also referred as to the binormal flow). This equation appears as an approximation model for the self-induced motion of a vortex filament in an inviscid incompressible fluid. The solutions behave as 3d-logarithmic spirals at infinity. The proofs of the results are strongly based on the existing connection between the binormal flow and certain Schr\"odinger equations.Comment: 60 pages, 8 figure

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table

    Measurement of the CKM angle γ from a combination of B±→Dh± analyses

    Get PDF
    A combination of three LHCb measurements of the CKM angle γ is presented. The decays B±→D K± and B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− final states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-fit value of γ =72.0◦ is found, and confidence intervals are set γ ∈ [56.4,86.7]◦ at 68% CL, γ ∈ [42.6,99.6]◦ at 95% CL. The best-fit value of γ found from a combination of results from B±→Dπ± decays alone, is γ =18.9◦, and the confidence intervals γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ± decays gives a best-fit value of γ =72.6◦ and the confidence intervals γ ∈ [55.4,82.3]◦ at 68% CL, γ ∈ [40.2,92.7]◦ at 95% CL are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0 mixing

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Search for the decay Bs0→D*∓π±

    Get PDF
    A search for the decay Bs0→D*∓π± is presented using a data sample corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions collected by LHCb. This decay is expected to be mediated by a W-exchange diagram, with little contribution from rescattering processes, and therefore a measurement of the branching fraction will help us to understand the mechanism behind related decays such as Bs0→π+π- and Bs0→DD- . Systematic uncertainties are minimized by using B0→D*∓π± as a normalization channel. We find no evidence for a signal, and set an upper limit on the branching fraction of B(Bs0→D*∓π±)<6.1(7.8)×10-6 at 90% (95%) confidence level

    Measurements of the branching fractions of B+→ppK+ decays

    Get PDF
    The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained

    Search for CP violation in D+KK+π+D^{+} \to K^{-}K^{+}\pi^{+} decays

    Get PDF
    A model-independent search for direct CP violation in the Cabibbo suppressed decay D+KK+π+D^+ \to K^- K^+\pi^+ in a sample of approximately 370,000 decays is carried out. The data were collected by the LHCb experiment in 2010 and correspond to an integrated luminosity of 35 pb1^{-1}. The normalized Dalitz plot distributions for D+D^+ and DD^- are compared using four different binning schemes that are sensitive to different manifestations of CP violation. No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− μ + νμ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Study of DJ meson decays to D+π−, D0π+ and D∗+π− final states in pp collisions

    Get PDF
    A study of D+π−, D0π+ and D∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D1(2420)0 resonance is observed in the D∗+π− final state and the D∗2(2460) resonance is observed in the D+π−, D0π+ and D∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D∗+π−, D+π− and D0π+ final states
    corecore