21 research outputs found

    Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective

    Full text link
    Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break‐ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node‐based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well‐known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non‐uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total‐group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of semi‐independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows that long‐distance dispersals and regional extinctions can confound and erode pre‐existing vicariance‐driven patterns. It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took place during the Late Cretaceous and Cenozoic. Although long‐distance dispersals likely shaped the distributions of several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological dynamics are still unclear and require further investigation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148368/1/brv12473_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148368/2/brv12473.pd

    †Kenyaichthyidae fam. nov and †Kenyaichthys gen. nov - First Record of a Fossil Aplocheiloid Killifish (Teleostei, Cyprinodontiformes)

    Get PDF
    The extant Cyprinodontiformes (killifishes) with their two suborders Cyprinodontoidei and Aplocheiloidei represent a diverse and well-studied group of fishes. However, their fossil record is comparatively sparse and has so far yielded members of the Cyprinodontoidei only. Here we report on cyprinodontiform fossils from the upper Miocene Lukeino Formation in the Tugen Hills of the Central Rift Valley of Kenya, which represent the first fossil record of an aplocheiloid killifish. A total of 169 specimens - mostly extraordinarily well preserved and a sample of ten extant cyprinodontiform species were studied on the basis of morphometrics, meristics and osteology. A phylogenetic analysis using PAUP was also conducted for the fossils. Both the osteological data and the phylogenetic analysis provide strong evidence for the assignment of the fossils to the Aplocheiloidei, and justify the definition of the new family dagger Kenyaichthyidae, the new genus dagger Kenyaichthys and the new species dagger K. kipkechi sp. nov. The phylogenetic analysis unexpectedly places dagger Kenyaichthys gen. nov. in a sister relationship to the Rivulidae (a purely Neotropical group),a probable explanation might be lack of available synapomorphies for the Rivulidae, Nothobranchiidae and Aplocheilidae. The specimens of dagger K. kipkechi sp. nov. show several polymorphic characters and large overlap in meristic traits, which justifies their interpretation as a species flock in statu nascendi. Patterns of variation in neural and haemal spine dimensions in the caudal vertebrae of dagger Kenyaichthys gen. nov. and the extant species studied indicate that some previously suggested synapomorphies of the Cyprinodontoidei and Aplocheiloidei need to be revised

    Biostratigraphic and Environmental Aspects of the Late Miocene-Early Pliocene Deposits in Develiköy (Manisa, Turkey)

    No full text
    The known late Late Miocene to Early Pliocene sequence in Develiköy (Manisa, Turkey) consists of a lower clastic unit (the Çamli formation) and an upper carbonate-clastic unit (the Urla formation). This sequence is overlain unconformably by uniformly reddish clastic deposits (the Halitpaşa formation) as yet of unknown age. The lower age limit for the Urla formation is Turolian on the basis of mammalian evidence. The known Early Pliocene upper age limit may be extended to the higher parts of the formation on the basis molluscs and algae. Fossil flora and fauna suggest that deposition of the Urla formation took place under fresh water, shallow, lacustrine conditions

    The evolutionary origins of Syngnathidae: pipefishes and seahorses

    Get PDF
    Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiform fishes remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathid fishes, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. However, despite recent insights into syngnathid evolution, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathid fishes would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole
    corecore