40 research outputs found

    Slow roll in simple non-canonical inflation

    Get PDF
    We consider inflation using a class of non-canonical Lagrangians for which the modification to the kinetic term depends on the field, but not its derivatives. We generalize the standard Hubble slow roll expansion to the non-canonical case and derive expressions for observables in terms of the generalized slow roll parameters. We apply the general results to the illustrative case of ``Slinky'' inflation, which has a simple, exactly solvable, non-canonical representation. However, when transformed into a canonical basis, Slinky inflation consists of a field oscillating on a multi-valued potential. We calculate the power spectrum of curvature perturbations for Slinky inflation directly in the non-canonical basis, and show that the spectrum is approximately a power law on large scales, with a ``blue'' power spectrum. On small scales, the power spectrum exhibits strong oscillatory behavior. This is an example of a model in which the widely used solution of Garriga and Mukhanov gives the wrong answer for the power spectrum.Comment: 9 pages, LaTeX, four figures. (V2: minor changes to text. Version submitted to JCAP.

    New Solutions of the Inflationary Flow Equations

    Full text link
    The inflationary flow equations are a frequently used method of surveying the space of inflationary models. In these applications the infinite hierarchy of differential equations is truncated in a way which has been shown to be equivalent to restricting the set of models considered to those characterized by polynomial inflaton potentials. This paper explores a different method of solving the flow equations, which does not truncate the hierarchy and in consequence covers a much wider class of models while retaining the practical usability of the standard approach.Comment: References added, and a couple of comment

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v

    Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB

    Full text link
    We extend the standard theory of cosmological perturbations to homogeneous but anisotropic universes. We present an exhaustive computation for the case of a Bianchi I model, with a residual isotropy between two spatial dimensions, which is undergoing complete isotropization at the onset of inflation; we also show how the computation can be further extended to more general backgrounds. In presence of a single inflaton field, there are three physical perturbations (precisely as in the isotropic case), which are obtained (i) by removing gauge and nondynamical degrees of freedom, and (ii) by finding the combinations of the remaining modes in terms of which the quadratic action of the perturbations is canonical. The three perturbations, which later in the isotropic regime become a scalar mode and two tensor polarizations (gravitational wave), are coupled to each other already at the linearized level during the anisotropic phase. This generates nonvanishing correlations between different modes of the CMB anisotropies, which can be particularly relevant at large scales (and, potentially, be related to the large scale anomalies in the WMAP data). As an example, we compute the spectrum of the perturbations in this Bianchi I geometry, assuming that the inflaton is in a slow roll regime also in the anisotropic phase. For this simple set-up, fixing the initial conditions for the perturbations appears more difficult than in the standard case, and additional assumptions seem to be needed to provide predictions for the CMB anisotropies.Comment: 31 pages, 3 figure

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Full text link
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Get PDF
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    Recovering the Inflationary Potential and Primordial Power Spectrum With a Slow Roll Prior: Methodology and Application to WMAP 3 Year Data

    Full text link
    We introduce a new method for applying an inflationary prior to a cosmological dataset that includes relations between observables at arbitrary order in the slow roll expansion. The process is based on the inflationary flow equations, and the slow roll parameters appear explicitly in the cosmological parameter set. We contrast our method to other ways of imposing an inflationary prior on a cosmological dataset, and argue that this method is ideal for use with heterogeneous datasets. In particular, it would be well suited to exploiting any direct detection of fundamental tensor modes by a BBO-style mission. To demonstrate the practical use of this method we apply it to the WMAPI+All dataset, and the newly released WMAPII dataset on its own and together with the SDSS data. We find that all basic classes of single field inflationary models are still allowed at the 1-2sigma level, but the overall parameter space is sharply constrained. In particular, we find evidence that the combination of WMAPII+SDSS is sensitive to effects arising from terms that are quadratic in the two leading-order slow roll parameters.Comment: v2 adds references and fixes typos. New explanatory material added clarifying effects that depend on terms that are second order in the slow roll parameters, and the impact of the beam parametrization and SZ prior on the central value of n_s v3: Added refs, minor clarifications, title modified. In press with JCAP v4: New figures, with minor smoothing artifacts removed. Matches published version. v5 Fixed typo in caption of Figure

    Cosmology From Random Multifield Potentials

    Full text link
    We consider the statistical properties of vacua and inflationary trajectories associated with a random multifield potential. Our underlying motivation is the string landscape, but our calculations apply to general potentials. Using random matrix theory, we analyze the Hessian matrices associated with the extrema of this potential. These potentials generically have a vast number of extrema. If the cross-couplings (off-diagonal terms) are of the same order as the self-couplings (diagonal terms) we show that essentially all extrema are saddles, and the number of minima is effectively zero. Avoiding this requires the same separation of scales needed to ensure that Newton's constant is stable against radiative corrections in a string landscape. Using the central limit theorem we find that even if the number of extrema is enormous, the typical distance between extrema is still substantial -- with challenging implications for inflationary models that depend on the existence of a complicated path inside the landscape.Comment: revtex, 3 figures, 10 pages v2 refs adde

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    corecore