53 research outputs found

    Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?

    Get PDF
    Humpback whales (Megaptera novaeangliae) in the Southeastern Atlantic Ocean (International Whaling Commission ‘Breeding Stock B’—BSB) are distributed from the Gulf of Guinea to Western South Africa. Genetic data suggest that this stock may be sub-structured, but it remains unknown if this is due to reproductive segregation. This paper evaluates the spatial and temporal population structure of BSB humpback whales using a combination of maternally and bi-parentally inherited markers. The genetic differentiation that we identify in this study could be due to a combination of (1) spatial and/or temporal segregation on breeding grounds in the greater Gulf of Guinea, (2) the possibility of maternally inherited site fidelity to specific feeding grounds and (3) the use of two generalized but exclusive migratory routes (coastal and offshore) between feeding and breeding areas. Further, photo-identification and genetic sampling efforts in other areas of the Sub-Saharan Western Africa winter range and targeted deployment of satellite tags would help to clarify some of the apparent complexity in the population structure of animals biopsied in this region.National Research Foundation (South Africa) under Grant Number 2053539. I. Carvalho was supported by a PhD scholarship (SFRH/BD/18049/2004), from the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia—FCT).http://link.springer.com/journal/227hb201

    Transit station or destination? Attendance patterns, movements, and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching

    Get PDF
    Humpback whales found off west South Africa (WSA) are known to display an atypical migration that may include temporary residency and feeding during spring and summer. At a regional scale there is uncertainty about how these whales relate to the greater West African Breeding Stock B as a whole, with evidence both for and against its division into two sub-stocks. A database containing sighting information of humpback whales intercepted by boat in the WSA region from 1983 to 2008 was compiled. It included a total of 1,820 identification images of ventral tail flukes and lateral views of dorsal fins. After systematic within- and between-year matching of images of usable quality, it yielded 154 different individuals identified by tail flukes (TF), 230 by left dorsal fins (LDF), and 237 by right dorsal fins (RDF). Microsatellite (MS) matching of 216 skin biopsies yielded 156 individuals. By linking all possible sightings of the same individuals using all available identification features, the periodicity and seasonality of 281 individual whales were examined. Sixty whales were resighted on different days of which 44 were between different calendar years. The most resightings for one individual was 11 times, seen in six different years, while the longest interval between first and last sightings was about 18 years. A resighting rate of 15.6% of whales at intervals of a year or more indicates long-term fidelity to the region. Shorter intervals of 1 – 6 months between sequential sightings in the same year may suggest temporary residency. The TF image collection from WSA was compared to TF collections from four other regions, namely Gabon, Cabinda (Angola), Namibia and the Antarctic Humpback Whale Catalogue (AHWC). Three matches were detected were between WSA (in late spring or summer) and Gabon (in winter), confirming direct movement between these regions. The capture-recapture data of four different identification features (TF, RDF, LDF and MS) from six successive subsets of data from periods with the highest collection effort (2001 – 2007), were used to calculate the number of whales that utilise the region, using both closed and open-population models. Since dorsal fins have never been used to estimate abundance for humpback whales, the different identification features were evaluated for potential biases. This revealed 9 – 14% incidence of missed matches (false negatives) when using dorsal fins that will result in an overestimate, while variation in individual fluke-up behaviour may lower estimates due to heterogeneity of individual capture probability, by as much as 57-69%. Taking into consideration the small dataset and low number of recaptures, the most consistent and precise results were obtained from a fully time-dependent version of the Jolly-Seber open-population model, with annual survival fixed at 0.96, using the MS dataset. This suggests that the WSA feeding assemblage during the months of spring and summer of the study period numbered about 500. The relationship of these whales to those (perhaps strictly migratory) that may occur here in other seasons of the year, and their links to possible migratory routes and other feeding or breeding areas remain uncertain.National Research Foundation (NRF), South Africa, under Grant Number 2047517. Earthwatch Institute (funding), The Mazda Wildlife Fund (through the provision of a field vehicle), SASOL (through the donation of two four-stroke engines), PADI Project AWARE (UK) (funding), the South African Navy (access to the shore-based look-out), the Military Academy, University of Stellenbosch (accommodation) and Iziko South African Museum (office space and support). JB gratefully received financial support in the form of bursaries from the NRF, the Society for Marine Mammalogy, University of Pretoria, and the Wildlife Society of South Africa (Charles Astley Maberley Memorial bursary). The Namibian Dolphin Project is supported by NACOMA (Namibian Coastal Conservation and Management Project), the Nedbank Go Green Fund, Mohammed bin Zayed Species Conservation Fund, the British Ecological Society, the Rufford Small Grants Foundation and the Namibia Nature Foundation. JB and TJQC received funding from the International Whaling Commission (IWC) to conduct between-region matching.http://www.tandfonline.com/loi/tams20nf201

    First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management

    Get PDF
    The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts

    The waters of São Tomé: a calving ground for West African humpback whales?

    Get PDF
    In the Southern Hemisphere, humpback whales Megaptera novaeangliae feed in Antarctic waters during the austral summer and migrate to their breeding grounds in subtropical and tropical waters during the winter. Historical whaling records suggest that the Archipelago of Sao Tome and Principe, located in the Gulf of Guinea, serves as a possible breeding ground. In order to investigate the temporal occurrence and group composition of humpback whales around Sao Tome Island, annual surveys were conducted during the breeding season between 2002 and 2006. A total of 186 boat-based surveys took place during this period. Data collected during each sighting included geographical positions, group size, group composition and behavioural classifications. Of the 66 groups encountered, mother/calf pairs made up a large proportion (65.15%), followed by solitary individuals (15.15%). Mother/calf pairs were seen in the region into November and resightings of identified animals indicate periods of occupancy that extended over three weeks. Few behaviours typically associated with mating activity were observed. Given the high percentage of mother/calf pairs, sometimes with very young calves, and the low frequency of mating activity, the waters of Sao Tome may primarily serve as a calving and nursing or resting area for humpback whales.Projecto Delfim; Rolas Island Resort; ECOFAC (Conservation et utilisation rationnelle des Ecosystemes Forestiers en Afrique Centrale); Wildlife Conservation Society

    Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans

    Get PDF
    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region

    Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a southern hemisphere coastal feeding ground

    Get PDF
    Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.National Research Foundation (NRF), South Africa [2047517]; PADI Project AWARE (UK) [095]; Earthwatch Institute (project title "Whales of South Africa"

    Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa.

    Get PDF
    Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.Main funding: This work was funded by the Wellcome Trust, The Wellcome Sanger Institute (WT098051), the U.K. Medical Research Council (G0901213-92157, G0801566, and MR/K013491/1), and the Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS core funding

    Evaluating the Impact of Functional Genetic Variation on HIV-1 Control.

    Get PDF
    Background: Previous genetic association studies of human immunodeficiency virus-1 (HIV-1) progression have focused on common human genetic variation ascertained through genome-wide genotyping. Methods: We sought to systematically assess the full spectrum of functional variation in protein coding gene regions on HIV-1 progression through exome sequencing of 1327 individuals. Genetic variants were tested individually and in aggregate across genes and gene sets for an influence on HIV-1 viral load. Results: Multiple single variants within the major histocompatibility complex (MHC) region were observed to be strongly associated with HIV-1 outcome, consistent with the known impact of classical HLA alleles. However, no single variant or gene located outside of the MHC region was significantly associated with HIV progression. Set-based association testing focusing on genes identified as being essential for HIV replication in genome-wide small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR) studies did not reveal any novel associations. Conclusions: These results suggest that exonic variants with large effect sizes are unlikely to have a major contribution to host control of HIV infection

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore