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Abstract 
 
Genomic studies in African populations provide unique opportunities to understand disease 
aetiology, human genetic diversity and population history in a regional and a global context. In the 
largest study of its kind to date, comprising genome-wide data from 6,400 individuals from rural 
Uganda, and including whole-genome sequences from 1,978 individuals, we find evidence of 
geographically correlated fine-scale population substructure. Historically, we show that the ancestry 
of modern Ugandans is best represented by a mixture of ancient East African pastoralist populations. 
We demonstrate the value of the largest sequence panel from Africa to date as a global resource for 
population genetics, imputation and understanding the mutational spectrum and its clinical 
relevance in African populations. Examining 34 cardiometabolic traits, we show systematic 
differences in trait heritability between European and African populations, probably reflecting the 
differential impact of genetic and environmental factors. In the first multi-trait pan-African GWAS in 
up to 14,126 individuals, we identify 10 novel loci associated with anthropometric, haematological, 
lipid and glycemic traits. Our findings suggest that several functionally important signals at known 
and novel loci may be driven by differentiated variants within and specific to Africa, highlighting the 
value of including diverse study populations in African GWAS. We provide a rich new genomic and 
phenotypic resource for researchers in Africa and globally. 
 
Introduction 
 
Africa is central to our understanding of human origins, genetic diversity and disease susceptibility.1 
The marked genomic diversity and allelic differentiation among populations in Africa, in combination 
with the substantially lower linkage disequilibrium (correlation) among genetic variants, has the 
potential to provide new opportunities to understand disease aetiology relevant to African populations 
but also globally.1,2 Consequently, there is a clear scientific and public health need to develop large-
scale efforts that examine disease susceptibility across diverse populations within the African 
continent. Such efforts will need to be fully integrated with research-capacity-building initiatives across 
the region.3  
 
Countries in Africa are undergoing epidemiological transitions—with a high burden of endemic 
infectious disease and growing prevalence of non-communicable diseases.4 Importantly, because of 
varying environments, population history, and adaptive evolution, the distribution of risk factors for a 
broad range of cardiometabolic and infectious diseases, and their individual contributions, may differ 
among populations globally.5 Differences in allele frequencies among populations, due to either 
selection or genetic drift provide unique opportunities to identify novel disease susceptibility loci; 
highlighting the value of conducting such studies in African populations. However, while there has 
been a recent increase in genetic studies of cardiometabolic traits including African-Americans,6,7 there 
have been relatively few investigations of population diversity or the genetic determinants of 
cardiometabolic or infectious traits and diseases across the continent.  
 
To conduct genetic studies in diverse populations across Africa, appropriate study designs that account 
for population structure, admixture and genetic relatedness (overt and cryptic), as well as the 
development of genetic tools to capture variation in African genomes, are needed.2 To leverage the 
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relative benefits of different strategies, we undertook a combined approach of genotyping and low 
coverage whole-genome sequencing (WGS) in a population-based study of 6,400 individuals from a 
geographically defined rural community in South-West Uganda (Figure 1a, STAR Methods, Figure 1, 
Figure S1 and Table S1.1). We present data from 4,778 individuals with genotypes for ~2.2 million SNPs 
from the Uganda genome-wide association study (UGWAS) resource (STAR Methods), and sequence 
data (STAR Methods, Table S1.1) on up to 1,978 individuals including 41.5M SNPs and 4.5M indels 
(UG2G) (Figure 3, Figure S1, Table S1.8, Table S4.1 and STAR Methods). Collectively, these data 
represent the Uganda Genome Resource (UGR). To enhance trait-associated locus discovery, we also 
include collective data on up to 14,126 individuals from across the African continent for genome wide 
association analysis (STAR Methods).   
 
Using these resources, we conducted a series of analyses to: 1) understand the population structure, 
admixture and demographic history in a geographically-defined population from Uganda (STAR 
Methods); 2) describe the spectrum of disease-causing mutations in the UG2G cohort (STAR Methods); 
and 3) highlight the value of the UG2G sequence panel as an imputation resource (STAR Methods). 4) 
refine estimates of heritability of 34 complex traits, accounting for environmental correlation among 
individuals (STAR Methods); and 5) assess the spectrum of genetic variants associated with 
cardiometabolic and other complex traits in populations from sub-Saharan Africa (STAR Methods). 
Importantly, the UGR was designed to help develop local resources for public health and genomic 
research, including building research capacity, training and collaboration across the region. We 
envisage that data from these studies will provide a global resource for researchers, as well as facilitate 
genetic studies in African populations. 
 
Results 
 
Population structure and demographic history in a rural Ugandan community 
 
Uganda has a diverse and complex history of extensive historical migration from surrounding regions 
over several hundred years. Migration has included economic migration for labour, as well as migration 
due to conflict in surrounding regions. Uganda is home to several diverse ethno-linguistic groups.  The 
Ganda (‘Baganda’) are most common ethno-linguistic group in central Uganda (previously the Kingdom 
of Buganda). This central region has also seen extensive migration from the surrounding regions of 
Rwanda, Burundi (formerly Ruanda-Urundi) and Tanzania (formerly the district of Tanganyika) (Figure 
1)8 identifying as the ‘Banyarwanda’,  ‘Barundi’ and ‘Batanzania’, respectively.8 More recent migration 
has occurred from Rwanda, due to displacement following conflict (identified as ‘Rwandese Ugandans’, 
distinct from the ‘Banyarwanda’). In addition to migration from surrounding regions, there have been 
large movements of people within Uganda relating to economic incentives during the colonial era. These 
include the Bakiga from Kigezi (Kiga), the Banyankole (Nkole) and Bafumbira from Kisoro from south-
western Uganda, and the Batooro (Toro), Basoga (Soga) from regions adjacent to central Uganda (Figure 
1).8  There are a number of other ethnic groups that have migrated to Buganda from adjoining areas of 
South Sudan (the Madi and Acholi), the Democratic Republic of Congo on the north-western Ugandan 
border, as well as the from the West Nile region of Uganda (the Lugbara and Alur), and are referred to 
as “West Nile” migrants.8 These groups often speak Nilotic languages. In our cohort, these ethno-
linguistic groups are collectively classified as ‘Others’, as their fine-scale ethno-linguistic group 
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information was not available for these individuals. In this study, ethnolinguistic groups are based on 
self-identification and should be considered as representing a broad construct that encompasses shared 
cultural heritage, ancestry, history, homeland, language or ideology.  
 
We characterised genetic diversity and fine-scale structure among nine ethno-linguistic population 
groups from a geographically-defined rural community from the Kalungu district in South-West Uganda 
(Figure 1, STAR Methods). Principal components (PCs) 1 and 2 explained 0.3% and 0.1% of the genetic 
variation observed, respectively, with the cline along PC1 (Figure S2) being strongly correlated with 
with Eurasian admixture (r=-0.98, p<2x10-16) as inferred from ADMIXTURE, K=4 (Figure 2). This was 
corroborated in principal component analysis of Ugandan ethno-linguistic groups in the context of 
global populations (Figure S2) and our fineSTRUCTURE9 analysis (Figure 1). FineSTRUCTURE analysis of 
the co-ancestry matrix inferred from linked genetic variants showed evidence suggestive of population 
substructure (Figure 1, Figure S2, Table S1.4 and STAR Methods) with PCs 1 and 2 explaining 11.9% 
and 3.5% of observed variation, respectively. Clines along fineSTRUCTURE PC1 and PC2 were highly 
correlated with Eurasian (r=-0.90) and East African Nilo-Saharan ancestry (r=-0.98) as delineated by 
ADMIXTURE, K=4, respectively (Figure 1, STAR Methods). Here, Nilo-Saharan ancestry is defined as the 
ancestral component in ADMIXTURE analysis that was most prominent among the Dinka. The PC2 cline 
representing Nilo-Saharan ancestry was seen predominantly among the ethnolinguistic group classified 
as ‘Others’, consistent with these representing ethno-linguistic groups that have migrated into Uganda 
from the North Western region along the Nile. This suggests that the largest proportion of variation 
among the cohort was possibly driven by Eurasian and East African Nilo-Saharan gene flow. 
 
Using Procrustes analyses, we find that substructure among ethno-linguisitic groups in this rural 
Ugandan community is correlated with the historical geographical origins of these migrant populations 
(Figure 1, Tables S2.2-2.4 and STAR Methods). This suggests that in spite of extensive migration and 
mixture, substructure does exist among individuals in Uganda, and this substructure shows statistically 
significant correlation with the historical distribution of population groups across the region. We find  
no clear association with current geographical coordinates, consistent with extensive movement and 
mixing following migration within this region (Table S2.1). These findings are corroborated by 
fineSTRUCTURE tree inference from the co-ancestry matrix which also shows clade structure reflecting 
historical geographical regions from which these populations have migrated. Ethno-linguistic groups 
from the central region of Uganda (the Baganda, Basoga and Batooro), migrant populations from 
Rwanda, Burundi, Tanzania (Banyarwanda, Rwandese Ugandans, Barundi and Batanzania, respectively)  
and those from South-western Uganda (Bakiga, Banyankole and Bafumbira) form separate clades 
(Figure 1 and STAR Methods). This clade structure may potentially also reflect the different amounts of 
Eurasian admixture observed among these populations, as we discuss subsequently.  
 
On unsupervised fineSTRUCTURE analysis, we identify 52 population clusters (Figure 1e). These 
clusters appear represent a combination of factors, including ethno-linguistic group, historical 
geographical context (Figure 1d and 1e), as well as proportion of Eurasian and Nilo-Saharan ancestry, 
as estimated by ADMIXTURE, K=4. No clear pattern was observed by current GPS coordinate (Figure 
1c), consistent with Procrustes analysis.  
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Using QpAdm, we identify evidence for at least three distinct streams of ancestry across the Ugandan 
populations relative to outgroups through qpWave analysis (rank 2, p=0.02) (Table S3.8 and STAR 
Methods). On examining change in rank on removing populations one at a time, we find that the 
distinct streams of ancestry correspond well with the clade structure inferred in fineSTRUCTURE, and 
historical geographic origins of these groups. Specifically, we find that the rank of the matrix drops by 
one on excluding Rwandese_Ugandan, Banyarwanda, Bakiga, Banyankole, suggesting that these 
include a distinct source of ancestry potentially not present in other populations (Table S3.8). Another 
stream of ancestry appears to be contributed by Barundi, and Mutanzania, consistent with the tree 
structure inferred by fineSTRUCTURE (Figure 1d). Baganda, Basoga and Mutooro appear to be 
relatively homogeneous, with only a single source of ancestry inferred across these populations (Table 
S3.8). 
 
Formal tests for admixture (f3, f4 tests, MALDER and GLOBETROTTER analyses);10 6 consistently 
supported evidence for Eurasian-like gene flow in Uganda (Figure S4, Tables S3.1-S3.12, STAR 
Methods). Eurasian-like gene flow may be inferred by these tests if the source population has allele 
frequency spectra correlated with modern Eurasians. This does not in itself provide evidence for 
Eurasian back migration into East Africa. We evaluate the source of this ancestry further. The presence 
of Eurasian MT (K1a, R0a1a, N1a1a3, HV1b1a,  I, J1d1a1, and W8) and Y chromosome (R1b and H) 
haplogroups within Uganda provide support for back-migration, as these haplotypes are thought to 
have arisen from out-of-Africa (Figure S6, Table S3.7, and STAR Methods).11-13 In order to distinguish 
Eurasian gene flow from ancient structure within East Africa, we also assessed the the double 
conditioned site-frequency spectrum among Ugandans, with the sfs being conditioned on alleles being 
derived in a French sample, and ancestral in Yoruba (YRI). A non-linear L shaped sfs, enriched for rare 
derived alleles would be consistent with recent admixture, and not ancient substructure. Our results 
confirm an observed dcsfs enriched for rare derived alleles and consistent with Eurasian gene flow. On 
assessing the fit of simulated data under different parameters, and observed data, we find that gene 
flow from Eurasian populations into Ugandans is necessary to explain the observed frequency spectra 
(STAR Methods, Figure S5, and Tables S3.3-S3.4). Overall a the dual model of admixture (~7% 
admixture) and ancient structure outperformed other models, including a model of ancient structure 
alone (p<0.005) (Table S3.4). We note, however that it is possible that fine-scale geographical spatial 
structure among populations could also explain these findings.14 
 
Using the Conditional Random Field model (CRF), we assessed the presence of Neanderthal haplotypes 
among Ugandans. As Neanderthal ancestry is restricted to populations outside Africa, any evidence of 
Neanderthal ancestry among Africans is likely to be due to Eurasian back migration. We show evidence 
of detectable Neanderthal ancestry in Uganda, providing support for Eurasian admixture resulting from 
back-to-Africa migration. (STAR Methods, Table S3.5-3.6). We first validated our approach by 
confirming enrichment of inferred Neanderthal sites within Eurasian segments in simulated data 
(p<0.001) (Table S3.6). We find that segments of inferred Neanderthal ancestry among Ugandans show 
high (95%) overlap with inferred Eurasian haplotype segments in the same individuals (as inferred by 
ChromoPainter9). On assessing the overlap of segments of Neanderthal ancestry with the known map 
of Neanderthal ancestry among Europeans and Asians in the 1000 Genomes project,15 we find that 
90% of segments identified as be Neanderthal in origin (permutation p<0.001), overlapped with known 
maps of Neanderthal introgression in European and Asian genomes, as defined in the 1000 Genomes 
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Project (Table S3.6)15 Furthermore, in line with expectations, we also find evidence of significantly 
lower background selection in identified regions of Neanderthal ancestry relative to other regions 
(mean B scores 920 and 799, respectively, permutation p<0.003). Collectively, our analyses support the 
Eurasian back-migration into Uganda,  consistent with previous work 16 17-19(Figure S4, STAR Methods, 
Tables S3.1-3.13).  
 
Consistent with the extensive history of migration into this region, unsupervised ADMIXTURE,20  and 
GLOBETROTTER21 analyses suggest that Ugandans are best represented by a mosaic of East African 
(Bantu, Nilo-Saharan, Afro-Asiatic and rf-HG) and Eurasian-like ancestral components among modern 
global human populations (Figures 1 and 2, Figures S2-S4, Tables S2.1-2.4, Tables S3.1-3.2, STAR 
Methods).  These findings are in keeping with other recent studies among East African populations 
that have suggested modern East African populations have been subject to complex admixture events 
over the past 5000 years.19,22 The proportion of Eurasian admixture appears to be lower in Baganda, 
Basoga and Batooro, (Figure 1d), suggesting that waves of admixture may have occurred with regional 
specificity within Uganda.  
 
Analysis with MALDER also detects multiple complex admixture events, with the older events inferred 
as best represented by modern rf-HG-like and Eurasian-like ancestral components having occurred 
~2000-4500 years ago, (Figure S4), and more recent Eurasian-like admixture ~7-11 generations ago, 
consistent with previous reports.2 23. Given the relatively low proportion of rf-HG admixture inferred 
within Ugandans by ADMIXTURE, GLOBETROTTER, and fineSTRUCTURE analysis, we evaluated this 
further. ALDER suggests low levels of rf-like admixture in Baganda (lower bound 4.4%), consistent with 
previous reports,23 and our results from ADMIXTURE and GLOBETROTTER analysis. Inference of rf-HG-like 
and Eurasian ancestry as primary sources of admixture by MALDER here is likely to reflect the known 
bias of the algorithm towards identifying source ancestral components that are more drifted, even if 
they contribute proportionately little to ancestry.24  
 
Asymmetrical gene flow has previously been noted between rf-HGs and East Africans, with 
predominantly Bantu admixture inferred within regional rf-HGs. We recapitulate these findings, 23,25 
confirming substantial Bantu admixture in rf-HG (Mbuti) dating to ~760 years ago in ALDER analysis 
(lower bound admixture 18%). Collectively, our findings suggests that assimilation of eastern rf-HG like 
ancestry into East African Bantu populatons may have occurred during early migrations as part of the 
Bantu expansion, as these populations expanded into this region.2  The route through which this 
ancestry entered these populations is unclear, and may have involved gene flow between Bantu and 
possibly other regional pastoralist or HG populations. We explore this further by examining  ancient 
East African populations as possible representative sources of ancestry among modern Ugandans. 
 
QpAdm analysis examining possible sources of admixture in modern Ugandans suggests that among 
global modern and ancient populations, modern Ugandan populations are best represented by 
ancestral components relating to ancient East African pastoralist populations 
(Tanzania_Pemba_700BP, and Tanzania_Luxmanda_3000BP) (STAR Methods, Tables S3.12-S3.13). 
These ancient pastoralists have been shown to be represented by multiple ancestral components, 
including ancient hunter-gatherer (Mota) and Eurasian (Levant-like) ancestry,26 suggesting that these 
ancestral components may have entered modern Ugandans proximately through ancient East African 



	 8 

pastoralists in the region (STAR Methods). Our primary results identify a single source of ancestry 
represented by Tanzania_Pemba_700BP in Baganda and Basoga, consistent with previous qpWave 
analyses (Table S3.12). Other populations can be modelled either as a mixture of 
Tanzania_Pemba_700BP and Tanzania_Luxmanda_3000BP, or as a mixture of Tanzania_Pemba_700BP 
and modern or ancient Eurasians. Eurasian admixture in Ugandans varies from 5.8-10.9% (Table S3.12). 
Consistent with qpWave results suggesting multiple streams of admixture within Uganda, we find that 
Banyarwanda and Rwandese Ugandans cannot be modelled by any combination of two or three-source 
populations, reflecting complex ancestry in these ethno-linguistic groups.  
 
We also note that although Tanzania_Pemba_700BP has been shown to be represented well by Mende 
previously 26 (a finding we were able to recapitulate in our analyses), replacing 
Tanzania_Pemba_700BP with Mende as a source population for admixture into Uganda in our models 
(Table S3.12) results in a poor model fit (p<0.01 in all cases). Our findings also suggest that West 
African populations may not reliably represent Bantu ancestry in East African Bantu populations.  In 
order to assess this, we examine the f4 statistic f4(chimp, Ancient South African; YRI/Mende, Uganda); 
we find asymmetry of Ugandan and West African populations relative to ancient South African Khoe-
San, evidenced by statistically significantly positive f4 statistics. Recent evidence has suggested that 
West Africans may carry a differential contribution of ancestry from an ancient population basal to 
ancient South Africans, leading to different West African populations (e.g. YRI and Mende) being 
asymmetrically related to ancient South Africans.26 In this context, the asymmetry observed between 
West and East Afrians relative to ancient Khoe-San may be due to lower or absent basal ancestry in 
East African bantu populations relative to West Africans (STAR Methods, Tables S3.9-3.11). 
Alternatively, this may also be explained by Hadza-like or Khoe-San related ancestry in modern 
Ugandans. Further evaluation and interpretation of these findings will require a wider sampling of 
ancient DNA samples from across Africa.  
 
To investigate ancient population size changes and split events, we examined a Ugandan trio 
sequenced at high depth (30x) using MSMC227  (STAR Methods, Tables S1.6-1.7 and Figure S7). We 
find that the demographic history of Ugandans is broadly comparable to other Africans such as Yoruba 
and Luhya (LWK), with an estimated effective population size of ~20,000 over the past 10,000 years 
(Table S1.7a and S1.7b). However, recent changes in population size of Ugandans seem more similar to 
LWK, as compared with YRI, and are consistent with patterns described by Schiffels et al. for LWK in the 
recent past (<10,000 years).27 Schiffels et al. observed a long 'hump' in ancestral population size 
extending back from 6,000 years ago to beyond 50,000 years ago; we see a similar pattern in Uganda, 
likely reflecting complex admixture in Uganda, with modern Ugandans being a mosaic of multiple 
structured popilations that were separated for several thousands of year, unril recent admixture due to 
the extensive migration into this region.  
 
On examining cross-coalescence between Uganda, YRI and LWK, we find that Ugandan populations 
split from Yoruba, Nigeria (YRI) ~11,500 ya, with subsequent gene flow between Uganda and LWK in 
recent times (Figure S7 and STAR Methods). The Uganda-YRI divergence is older than the Bantu 
expansion, 28 and may reflect varying patterns of Eurasian, basal and regional admixture in East and 
West African populations. It also should be noted that these divergence times are lower bounds, and 
are likely to be affected by gene flow between these populations following divergence, as previously 
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documented. 27 We note that while our cross-coalescence results for Uganda-YRI from 1000 Genomes 
Project reference based phasing are more in line with trio based phasing, reference based phasing 
using Complete Genomics data is suggestive of more recent split times (Figure S7g), suggesting that 
results from reference based phasing with the 1000 Genomes Project dataset are likely to have been 
more reliable. This is also in line with previous reports that inaccuracies in statistical phasing can 
impact inferences of split times. (ref) Our results support the sequencing of trios in diverse population 
sets to maximise phasing accuracy, or alternatively using strategies that can greatly improve phasing 
accuracy, such as linked read sequencing,29 optical nano-technology, or SMRT sequencing, as 
implemented with the PacBio platform. 
 
We explored more recent population history by examining rare variant sharing between the Baganda 
and other populations; we examined variants occurring only twice in the entire dataset (designated f2) 
(Figure S3 and STAR Methods). On assessing average f2 sharing on repeatedly subsampled random 
haplotypes (n=40) from each population, we see extensive sharing of f2 variants between Ugandan 
populations and other Niger-Congo language speaking populations in the 1000 Genomes Project from 
East and West Africa. We also see extensive sharing with European and Asian populations consistent 
with Eurasian gene flow into these populations (Figure S3a). Paradoxically, we see little sharing among 
Ugandan populations; however, it must be noted that this is likely to be a consequence of our 
ascertainment scheme, with f2 variants being rarer among the Ugandan populations, and therefore, 
less likely to be sampled in a random set of 40 haplotypes (Figure S3a, STAR Methods).  
 
Dating haplotypes surrounding f2 variants can provide important information about the interrelation 
among populations, including ancient and recent population divergence.30 Using this approach, we 
observe a total of 12,477,686 f2 variants in our dataset belonging to 9,875,361 f2 haplotypes. Given 
our ascertainment of f2 variants in a sample size comprising largely Ugandans, we expect f2 variation 
within Ugandans to be more recent than within other populations; therefore, we decided only to focus 
on the relationship of f2 variation between Ugandan and other populations, as this is likely to be 
relatively unbiased. We find that f2 variants shared between European and Ugandan populations are 
more recent than those shared between European and West African populations (median f2 dates 
were ~19,500 ya for Baganda compared with ~51,000 ya for YRI). This finding is consistent with back 
migration17 and Eurasian admixture in the Uganda populations;2,18 however, this may also reflect bias 
due to ascertainment of f2 variants in a larger population of Ugandans, thereby resulting in f2 variation 
representing rarer, and therefore more recent variation. Examining Ugandan populations in the 
context of other African populations, we find that f2 sharing between Ugandan populations and 
Ethiopians tend to be older (median f2 dating was ~23,000 ya) than Ugandan-West African splits, 
probably reflecting a combination of deeper population splits between Bantu- and Afro-Asiatic-
speaking groups, and relatively high Eurasian admixture in the Ethiopian populations. We also find 
evidence of very ancient divergence (with a median f2 dating of ~29,000 ya) between Baganda and Zulu 
(Figure S3); this could reflect old f2 sharing with highly divergent Khoe-San haplotypes present among 
Zulu and other Southern African populations.2 Our large African sequence resource allows the first 
such examination of shared rare variation among populations, and highlights the complex demographic 
histories of populations in this region.  
 
A whole genome resource for population and medical genetics 
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With the largest whole genome sequence dataset from Africa to date (Figure 3 and STAR Methods), 
we present a unique resource representing the spectrum of human genetic diversity in East Africa, as 
well as a resource to facilitate medical genetics studies in the region.  
 
As expected, and consistent with the out-of-Africa model, Africans carry higher levels of variation 
relative to other continental populations, the overwhelming majority being rare (Figure 3, Table S4.1, 
and STAR Methods). In line with these observations, African populations provide greater opportunities 
for variant discovery as a function of sample size (Table S4.1 and STAR Methods). We find that despite 
higher sequencing coverage within UK10K,  discovery of genetic variation with increases in sample 
sizes among the Ugandans is greater than with European individuals from UK10K, at least up to a 
sample size of 500, after which gains plateaued (Table X). We identify 9.5 M novel variants in the UG2G 
resource that are not present in the 1000 Genomes Project (1000G) Phase 3, African Genome Variation 
Project (AGVP) and UK10K reference panels (Figure 3), highlighting the importance of assessing diverse 
populations on a larger scale. Multi-allelic variants represented 0.87% of called SNPs.  
 
The average number of variants/individual in UG2G was greater than variation per individual observed 
in the UK10K cohorts dataset (4,298,968 and 3,412,214 in UG2G and UK10K cohorts, respectively), 
consistent with African populations having greater genetic diversity (Table S4.1). We also note a much 
greater proportion of rare variants among Ugandans, when comparing with an equal number of 
European individuals from the 1000 Genomes Project Phase 3, which has comparable depth of 
coverage. The differences in site frequency spectrum observed are consistent with a historical 
population bottleneck in Europeans, and greater genetic diversity with enrichment of rare variation 
among African populations. Heterozygosity rates among Ugandans were comparable to other African 
populations, except Ethiopia, where heterozygosity was lower, consistent with high levels of Eurasian 
admixture in these popultaions.  
 
We also explored the predicted functional consequences of variation in the UG2G population (Figure 3, 
Table S4.1-4.3, Figure S8 and STAR Methods). Consistent with overall diversity, UG2G participants 
carried more missense variants per individual compared with the UK10K population (12,198 and 
10,153 variants/individual respectively) (STAR Methods). As with previous studies, we find that in spite 
of the lower absolute number of missense mutations (149,251 in UG2G, and 69,761 in UK10K ALSPAC) 
in Europeans, these form a higher relative proportion of total variation (0.4% and 0.5% in UG2G and 
UK10K, respectively, p<2e-16) among Europeans. (STAR Methods). For disease-causing mutations 
(DMs), as annotated by the HGMD (Figure 3 and STAR Methods), we identified a median of 29 
DMs/individual in our cohort compared to 25 DMs/individual in UK10K, despite more extensive studies 
in European populations, and potentially biased ascertainment.31 By contrast, in UG2G, we observed a 
median of 3 homozygous DMs/individual compared with to 4 homozygous DMs/individual in UK10K 
(STAR Methods) (p<2x10-16).  In contrast to the GoNL study, where more than half of the DM variants 
were common (>5% AF), the Ugandan population shows the opposite pattern, with DM variants 
predominantly being rare (MAF <0.5%) in our cohort (Figure 3). A total of 650 out of the 998 DM 
variants had a frequency lower than 0.5%, whereas only 47 were common (>5% AF) in the UG2G. 
These findings are consistent with previous reports that suggest a shift towards the higher frequency 
spectrum for deleterious variants in out-of-Africa populations. However, these differences to some 
extent may also represent ascertainment of DMs primarily in Europeans.  
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On examining the number of ClinVar mutations per individual (2015 Clinvar database) in UG2G 
compared with the UK10K ALSPAC, and 1000 Genomes Phase III African and European populations, we 
observed greater number of median alleles/individual in the African individuals (UG2G and 1000 
Genomes Project Phase III African populations) compared to Europeans (UK10K ALSPAC and 1000 
Genomes Project phase III) in spite of the higher coverage of the ALSPAC dataset compared to UG2G 
(Table S4.2). Our results do not support substantial ascertainment bias in either the HGMD or ClinVar 
database, in contrast with previous reports of ascertainment. 31 32 On comparing results using an older 
version of the ClinVar database (2014 version), we find clear evidence of ascertainment bias in the 
older database, with a greater number of clinically significant disease alleles/individual among 
Europeans compared with Africans, as have been reported before (Table S4.2).32 Our findings suggest 
that generation of larger scale sequence data in more diverse panels have contributed to reduction in 
ascertainment bias among mutation databases over time.  
 
The distribution of the mutational spectrum in African and European populations is consistent with 
previous reports, 33,34 and the impact of differences in demographic history among these populations. 
33 The higher burden of homozygous deleterious variation in Europeans is consistent with previous 
literature35,36 ; resulting from a loss of rare alleles following a population bottleneck thereby leading to 
greater co-occurrence of these mutations in recessive form. 33  The differences observed are unikely to 
represent differences in efficiency of selection in European and African populations since the split, but 
rather non-selective demographic forces of drift and mutation in an expanding population after a 
bottleneck, as has been suggested previously.33 The higher frequency of deleterious variation in 
European populations may also be related to ascertainment bias, with more common recessive 
variation in European populations more likely to be identified and catalogued.37  
 
Allele frequency differences between populations along with clinical phenotype data may provide 
insights into the functional relevance of putative DMs. On assessing 38 DMs that were common in our 
cohort (MAF>5%) but rare or absent in the UK10K data (MAF<1%) (Table S4.3),38 we identify 
established causal loci associated with haematological traits, such as the G6PD and sickle cell (HBB) 
variants, which are common in UG2G, but absent from the UK10K data, consistent with these loci being 
under positive or balancing selection and protective against malaria (Table S4.3).39 However, we also 
demonstrate that several putative DMs associated that are common in UG2G but rare in UK10K, do not 
show strong evidence for association with relevant cardiometabolic or hematological traits (Figure S8). 
These include rs41264848 in the LPA region (p=0.40 for association with total cholesterol); rs36220239 
in the ADAMTS13 region, (p=0.90 for association with platelet count);  and rs115080759 in the HNF1A 
gene associated with MODY3 showing no association with HbA1C (p=0.20 in entire cohort, and p=0.29 
when only including individuals >40 yrs age). Our results for rs115080759 are consistent with reports 
that suggest this variant is benign.40 This emphasises the need to carefully and comprehensively 
evaluate the impact of putative functional or disease-causing mutations across global populations, 
because they may not have any clinical or biological relevance, or be readily transferable across 
populations.31,41    The lack of strong associations between these DMs and phenotypes in our cohort 
indicate that they are unlikely to be causal for the associated traits or may have different or lower 
penetrance within African populations due to complex factors, including epistasis, or gene-
environment interplay. 
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Finally, we assess the impact of the addition of the UG2G panel to existing reference panels on 
imputation accuracy among populations from sub-Saharan Africa (Figure 4). We show that addition of 
the UG2G panel to existing sequence panels with African haplotypes, such as the 1000G Phase 3, and 
AGVP (combined n=3,895), markedly improved imputation accuracy (r2 increase by 0.08 (MAF<=0.01) 
and 0.04 (all MAF)) for rare and common variants in Ugandan populations (Figure 4 and STAR 
methods). Additionally, we observe a substantial increase in imputation accuracy across the allele 
frequency spectrum generally in East African populations, including Nilo-Saharan linguistic groups such 
as the Kalenjin (Figure 4), probably reflecting haplotype sharing across the region. The number of 
variants “successfully” imputed (info³0.3) substantially increased using the UG2G panel in comparison 
with the 1000G Phase III and AGVP panels combined, with an additional 8M variants being successfully 
imputed in Baganda, and 1.5M additional variants successfully imputed among other East African 
populations (Figure 4). These analyses emphasise the importance of building regional sequence based 
resources to facilitating genetic studies in Africa, including alongside current initiatives such as the 
Haplotype Consortium42.  
 
Heritability of cardiometabolic traits in a rural Ugandan community 
Narrow-sense heritability represents the fraction of phenotypic variation in a population that is due to 
additive genetic variation. As such, it represents an important metric determining the genetic basis of 
complex traits and diseases. There have been no comprehensive evaluations of heritability and the 
interrelation with environment among African populations. We, therefore, assessed heritability for 34 
complex cardiometabolic traits using a mixed model approach that also models environmental 
correlation43 (Figure 5 and STAR Methods). 
 
Estimates of heritability corrected for environmental correlation varied from relatively modest (e.g. 
10% for GGT, a liver biomarker) to 55% for traits such as mean platelet volume (MPV) (Table S5.1).  
 (Figure 5,STAR Methods, Table S5.1) We find clear statistical differences in heritability estimates for 
several traits, compared to European populations (Figure 5 and Tables S5.2-5.4). For example, the 
narrow-sense heritability for height was 49% in Ugandans, compared with estimates of 70-80% in 
European populations (p<0.0001); by contrast, the heritability estimates for LDL were statistically 
significantly higher in the Ugandan population (54% vs 20-43% in European studies, p<0.002) (Figure 3, 
Tables S5.2-5.4 and STAR Methods). We speculate that these differences may be due to varying 
patterns of genetic loci influencing these traits in European and African populations, or perhaps more 
plausibly due to a larger proportion of environmental variation explaining phenotypic variance. For 
example, malnutrition or nutritional deficits in rural African populations may attenuate the effects of 
genetic variance on height, whereas dietary consumption and obesogenic environments in European 
populations may reduce the impact of genetic factors on the variation in LDL levels.44 We note, 
however, that lower estimates of heritability (e.g. for height) in the Ugandan cohort may also arise 
from differences in LD (lower LD with causal variants), lack of adjustment for shared environment in 
previous studies, or gene-evironment interactions. While we do not find statistically significant gene-
environment interactions for height, we find evidence for statistical gene-environment interaction for 
waist-hip ratio, red blood cell distribution width (RDW) and haematocrit (permutation p=<0.0001). 
These statistical interactions may represent interplay between genetic factors and dietary factors, iron 
stores and nutritional status (Table S5.1). Reliable assessment of the interrelation between genetic and 
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environmental variation, including specific environmental indices, will require application of these 
methods in much larger-scale studies with relevant phenotypic information. Examining locus-specific 
heritability would complement direct assessments of population differences in heritability of 
population traits. 
 
GWAS of cardiometabolic traits in African populations 
To assess the spectrum of genetic variants associated with cardiometabolic traits in African 
populations, we performed a GWAS of 34 cardiometabolic traits in up to 14,126 individuals from across 
the African continent, including populations from Ghana, Kenya, Nigeria, South Africa and Uganda 
(STAR Methods, Table 1, and Table S6.1-S6.12). To maximise opportunities for genomic discovery, we 
meta-analysed GWAS data from all study populations imputed with the UG2G-1000GP3-AGV combined 
panel, using the Han-Eskin random-effect meta-analytic approach implemented in METASOFT45 to 
allow for potential heterogeneity in allelic effects (STAR Methods). We first re-assessed thresholds for 
genome-wide statistical significance in African populations using several approaches46-49 and found 
that a statistical threshold of 5.0x10-9 is more relevant in populations with high genetic diversity and 
relatively lower levels of LD (Table S6.1 and STAR Methods). 
 
In our meta-analysis, we identified 43 distinct signals statistically significantly associated with at least 
one trait (Table S6.2). Following visual inspection of locusview plots, two association signals were 
excluded (Figure S9g and h) as likely to be artefactual. More than half of all remaining signals (23/41) 
were attributable to genetic variants specific to African populations or extremely rare in other 
populations (Table S6.2, Table S6.3 and STAR Methods). Among these, we identified ten distinct or 
secondary signals at previously identified loci (Table 1), of which nine were driven by genetic variants 
that were specific to Africa or extremely rare in other populations (Table S6.2). 
We also identified ten association signals within novel loci. These novel signals included associations 
with anthropometric indices, lipid, heamatological and blood cell traits (Table 1, Figure 6, Figure S9 
and Table S6.2). Among these novel signals, three were noted to have been previously identified as 
associated with biologically related traits.  
 
Our novel association signals included a functionally relevant association between a 3.8Kb deletion (-
α3.7), known to cause alpha thalassemia, and total bilirubin levels at p = 2x10-12 (STAR Methods, Table 
1 and Figure 6). The -α3.7 variant is thought to have risen to high frequencies in African populations in 
regions endemic for malaria by virtue of providing resistance to severe malaria.50  
 
We also identified a novel association with BMI on chromosome 1 (p=2.8x-10) in the intergenic region 
between PLD5 and SDCCAG8 (Table S6.2). The SDCCAG8  locus has been previously associated with 
extreme childhood obesity in Europeans.51 Recent unpublished summary data from GIANT and 
UKBiobank suggests that this locus may be associated with BMI (peak SNP rs11807000, p=5.7e-11).  
Our peak SNP is not present in these data or in the GIANT summary data. However, the presence of a 
comparably statistically significant association at this locus in a relatively small study (with respect to 
the UK Biobank and GIANT meta-analysis which examined ~700K individuals) is interesting, and needs 
further exploration. We also identified a novel association signal for the SNP rs7798566 (RE2 p=3e-15) 
with BMI on chr 7 in the intergenic region within the TAS2R gene family (Table S6.2). The TAS2R family 
of genes are expressed within the GI tract, are involved in taste sensitivity bitter-tasting compounds,52 
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and regulation of thyroid activity. Both these loci showed significant statistical heterogeneity of effect, 
with the association being seen only within the AADM cohort. The heterogeneity of effect for the 
SDCCAG8 locus among African cohorts, and European cohorts may point to differential effects in 
different environments or genetic backgrounds (epistasis), or differences in demographic make up of 
these studies. The significance of these novel discoveries will require further evaluation across diverse 
population groups. 
 
Among haematological traits, we identified a novel association on chr 11 between the PDHX and CD44 
region with WBC count. CD44 encodes a cell-surface protein that regulates neutrophil adhesion, 
migration and apoptosis,53,54 among other functions (Table S6.2 and Figure 6). We also identified a 
novel association between rs1347767, an Africa-specific (MAF=10%) variant,  downstream to R3HDM1 
associated with neutrophil count (Table S6.2).  While this locus has not been previously associated 
with neutrophil count, this region lies near the LCT locus, known to be associated with WBC count in an 
exome association study of African-Americans.55 The association at this locus was noted to be 
dependent on ancestry at the LCT locus in this study, suggesting the association may be population 
specific.55 We also observed an association of the SNP causing sickle cell anemia (rs334) with RDW 
within our analysis. Notably, this SNP has not been identified as associated with RDW in the UK 
Biobank analysis of ~171K individuals (p=0.006) highlighting the utility of examining diverse cohorts in 
identifying functionally important associations with disease. 
 
Fine mapping with MANTRA resulted in narrow credible intervals for most traits with 16 of 41 distinct 
loci being mapped to a single SNP in the credible interval (Table S6.4).56 We also resolved the 
previously identified association with HbA1c at the ITFG3 locus to the α-3.7 thalassemia deletion, which 
explained 3% of variation in HbA1c levels. We note that both associations were driven primarily by the 
Ugandan cohort, and not observed within other cohorts, consistent with the higher allele frequency of 
the deletion observed in Ugandans and the endemicity of malaria within this region.  Our findings 
recapitulate the need to more fully understand functional variation, including for 
heamoglobinopathies, that may explain a substantial proportion of variation in HbA1c in African 
populations. These factors may have a direct impact on the utility of using HbA1C as a clinical tool for 
detection and diagnosis of diabetes in Africa.57  
 
Given the complex and regionally-specific genetic diversity within Africa, we assessed patterns of 
heterogeneity and transferability of association signals across the four cohorts; to inform the design of 
medical genetics studies as well as understand the utility of European-centric polygenic scores for risk 
prediction in African populations. While most known associations with data available in >1 cohort were 
transferable (had nominally statistically significant p values in two or more cohorts), we identified 
several known and functionally important loci - the LIPC locus associated with HDL, the DARC locus 
encoding the Duffy antigen associated with monocyte count, and the the a-3.7 thalassemia variant at 
the HBA1/A2 locus associated with RBC count and HbA1c that only had statistical support from a single 
cohort. Limited transferability at some of these loci appears to reflect allele frequency differences 
among cohorts potentially related to positive selection relating to the endemicity of malaria in some 
geographical regions and not others (e.g. the DARC and HBA1/A2 loci).58-60 However, lack of 
transferability for other loci (e.g. LIPC) where the candidate SNP is common across all cohorts may 
reflect several factors, including allelic heterogeneity (multiple distinct variants at loci) or gene-
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environment interactions, and will need further investigation in large-scale studies of diverse African 
populations. Additionally, there were four associations at known loci where the association signal was 
driven by a single cohort due to population-specificity of the variant examined, or rarity of the variant 
in other cohorts (MAF<0.5%) (Table S6.3). These included the GPT locus associated with ALT, with 
variants driving the association specific to Uganda (no association was observed at this locus in other 
cohorts), and TIMD4 locus associated with LDL and total cholesterol levels.  
 
Expectedly, transferability was observed to be lower among novel association signals. Among nine 
novel associations with data in >1 cohort identified, 5 were noted to have support only from a single 
cohort (Table S6.3); among these was the functionally relevant the sickle cell locus associated with 
RDW, and the SDCCAG8 previously associated with childhood obesity51, associated with BMI in our 
data.  While the reasons for specificity of some of the novel loci to a single cohort relate to allele 
frequency differences of variants among cohorts (e.g. for the sickle cell locus), reasons for specificity at 
other loci are less clear, and require further exploration.  
 
To systematically examine differences in effect sizes across cohorts we examined statistical 
heterogeneity of effect at associated loci among studies. While most peak associated SNPs did not 
show evidence of statistically significant heterogeneity, we found strong evidence of statistical 
heterogeneity in regions around several peak SNPs within known and biologically important regions 
associated with total cholesterol, LDL(e.g. the PCSK9 and the APOE regions), bilirubin (UGT1A3-9 
genes), GGT (GGT1 locus), MCHC (HBA1/A2 locus), ALT levels (GPT) and neutrophil count (DARC locus) 
(Table S6.2). This heterogeneity was partly attributable to differences in LD structure around causal or 
peak variants across populations, or the presence of multiple distinct variants at loci—allelic 
heterogeneity (Figure S9 and STAR Methods). For example, joint and conditional analysis at the 
UG1TA3-9 locus associated with bilirubin in UGR showed evidence for three distinct SNPs associated 
with total bilirubin in joint and conditional analysis in the UGR (Figure S6c and Table S6.9), suggesting 
that statistical heterogeneity at a locus can provide important information about the genetic 
architecture of traits. Using the same approach, we also identified three distinct association signals at 
the GGT1 locus in UGR, (Figure S6d and Table S6.10), with differences in LD around these distinct 
signals potentially explaining the statistical heterogeneity observed within this locus between cohorts.  
 
In addition to allelic heterogeneity representing multiple distinct associations at a given locus, we also 
identified loci where distinct associations were identified as driving the association signal with a given 
trait among different populations. One example of this is the GPT locus associated with ALT levels, 
where distinct population-specific variants drive the association in Africans and Europeans. 61  We also 
identified a distinct association with ALP levels at the known ALPL locus. Peak associated SNPs at this 
locus have been previously noted to be different across large studies of European, 62 Chinese63 and 
Japanese64 cohorts (Table S6.5); these peak SNPs were not in LD with the peak SNP in Uganda, 
suggesting that multiple signals may be driving these associations at the locus in different populations. 
An alternate explanation is that all these SNPs may be differentially tagging an as yet unidentified 
causal variant.  
 
Collectively, our findings highlight the utility of genetic resources from diverse populations in novel 
discovery, especially for population-specific and low frequency association signals. In this context, 
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differences in frequencies of functional alleles, allelic heterogeneity and differences in LD structure 
provide unique opportunities for discovery and resolution of causal loci, and a better understanding of 
the genetic architecture of disease.  
 
Discussion 
 
Here we present, the largest whole-genome sequence dataset from an East African population to date, 
as well as a large genome-wide genotyped and pehnotyped dataset from the same population. We 
provide rich genomic resources for studies of human population history and GWAS, and a mechanism 
to evaluate the clinical relevance of genetic diversity both in African populations and globally.  
 
We present evidence for fine-scale structure and admixture in this Ugandan population, reflecting 
complex ancient and recent population migrations and expansions in East Africa. Our findings highlight 
the need for larger-scale deep sequencing, including a systematic assessment of hunter-gatherer 
populations across Africa, to more fully understand the genetic history and diversity of Africa. 
Sequencing of DNA from ancient skeletal material across Africa will greatly facilitate such efforts65—
allowing stronger inferences into the source of genetic diversity and population history in Africa and 
globally. 
 
Accounting for environmental correlation, we describe statistical differences in heritability for traits 
between African and European populations; these may be suggestive of differences in the interplay 
between genetic and environmental effects on heritable traits, as well as the impact of differences in 
genetic architecture as a result of selection, drift and historical demographic events. Our findings re-
iterate the dynamic and context-specific nature of heritability, potentially varying among populations, 
demographic factors and environmental exposures.66  
 
Lastly, in a combined meta-analyses of pan-African cohorts from five different countries across African 
totaling  14,126 individuals, we present results from trait-association discovery efforts. Our 
identification of several novel susceptibility loci across a range of complex traits argues for scaling 
efforts in the region. The continental and population-specificity of a large proportion of these 
association signals suggests that inclusion of diverse populations across Africa in GWAS may have the 
greatest potential for discovery and refinement of novel loci. Collectively, these findings provide the 
first empirical evidence to support theoretical models that suggest that power for discovery increases 
in meta-analyses of ethnically diverse populations, specifically driven by increased detection of low 
frequency and population-specific novel associations.67   
 
Given high genetic diversity, and regionally specific patterns of admixture, we highlight the need to 
design GWAS studies to leverage these differences in allele frequency spectrum, and LD patterns 
across the African cohorts, including the creation of more diverse African whole genomic resources. 
The differences in LD structure observed around peak association signals across African populations 
will facilitate the refinement of association signals, and help identify causal variants. With caveats for 
rare variant discovery in some scenarios (STAR Methods), our analyses emphasize the value of utilizing 
diverse populations across the region—to maximise opportunities for genomic discovery,68 and 
replication particularly in the context of rare and population-specific associations. Furthermore, 
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understanding differences in heritability, and identifying the full spectrum of genetic variation 
associated with complex traits and diseases across Africa, will require much larger-scale prospective 
studies that should include rich genomic and phenotypic data for complex traits and diseases, as well 
as information on environmental factors. In these contexts, our results provide a framework for 
undertaking more extensive GWAS in populations from Africa. Our findings also emphasise the need to 
develop methods to understand and compare heritability across populations. Recently, methods have 
been developed to assess heritabilities from summary statistics from GWAS, accounting for LD 
structure69; however, these methods will need to be extended to studies of diverse admixed 
populations with significant tracts of admixture LD, and within populations with high levels of 
relatedness. 
 
Since genetic diversity is greatest in African populations, including a substantial proportion of genetic 
variation that is continentally and regionally distinct, it will be critical to understand the functional and 
biological relevance of this diversity. Understanding the biological basis for population-specific 
association signals, as well as the impact and tranferability of putatively functional and disease causing 
mutations at the individual and population level, will require representative genomic resources. We 
emphasise the need for the parallel development of transcriptomic and cellular biological resources at 
the population level to better reflect global human diversity.70 
 
STAR Methods 
 

• CONTACT FOR RESOURCE SHARING 
• EXPERIMENTAL MODEL AND SUBJECT DETAILS 

o The Uganda Genome Resource (UGR) 
o The Durban Diabetes Study (DDS) 
o The Durban Case Control Study (DCC) 
o The Africa America Diabetes Mellitus Study (AADM) 

• METHODS DETAILS 
o Laboratory Measurements and Phenotypd Data 
o DNA Extraction, Genotyping and Sequencing 
o Quality Control of Genotype Data 
o Curation of Sequence Data 
o Phasing, Imputation and Filtering 
o Merging UGR Sequence and Genotype Data 
o Curation and Transformation of Phenotype Data 

• QUANTIFICATION AND STATISTICAL ANALYSIS 
o Analysis of Population Structure and Admixture 

§ A Brief history of rural Uganda 
§ Analysis of population structure 
§ Sharing of f2 variants and estimation of dates of shared variation 
§ Analysis of population admixture 
§ Inference of Population size and divergence from high coverage genome 

sequences 
o Analysis of Mutational spectrum in UGR 
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§ Diversity of the UGR 
§ Variant discovery 
§ UGR: Assessment as an imputation panel 

o Heritability of traits in the General Population Cohort (GPC) 
§ Statistical Model 
§ Heritability estimates for traits in the GPC 

o Genome-wide association study of 34 traits 
§ Meta-analysis across cohorts to maximise discovery 
§ Mixed model analysis of data 
§ Meta-analysis: statistical methods 
§ Genome-wide threshold for significance and defining significant loci 
§ Derivation of a genome-wide significance threshold for GWAS in African 

populations 
§ Conditional analysis and meta-analyses 
§ Analyses of transferability 
§ Results for discovery GWAS across 34 traits 
§ Fine mapping with MANTRA 

• DATA AVAILABILITY 
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