68 research outputs found

    The fungal subtilase AsES elicits a PTI-like defence response in Arabidopsis thaliana plants independently of its enzymatic activity

    Get PDF
    Acremonium strictum elicitor subtilisin (AsES) is a 34‐kDa serine‐protease secreted by the strawberry fungal pathogen A. strictum. On AsES perception, a set of defence reactions is induced, both locally and systemically, in a wide variety of plant species and against pathogens of alternative lifestyles. However, it is not clear whether AsES proteolytic activity is required for triggering a defence response or if the protein itself acts as an elicitor. To investigate the necessity of the protease activity to activate the defence response, AsES coding sequences of the wild‐type gene and a mutant on the active site (S226A) were cloned and expressed in Escherichia coli. Our data show that pretreatment of Arabidopsis plants with inactive proteins, i.e. inhibited with phenylmethylsulphonyl fluoride (PMSF) and mutant, resulted in an increased systemic resistance to Botrytis cinerea and expression of defence‐related genes in a temporal manner that mimics the effect already reported for the native AsES protein. The data presented in this study indicate that the defence‐eliciting property exhibited by AsES is not associated with its proteolytic activity. Moreover, the enhanced expression of some immune marker genes, seedling growth inhibition and the involvement of the co‐receptor BAK1 observed in plants treated with AsES suggests that AsES is being recognized as a pathogen‐associated molecular pattern by a leucine‐rich repeat receptor. The understanding of the mechanism of action of AsES will contribute to the development of new breeding strategies to confer durable resistance in plants

    DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids.

    Get PDF
    The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT

    Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab

    Get PDF
    Ustekinumab has shown efficacy in Crohn's Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients' data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index <= 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission

    Longitudinal changes in adherence to the portfolio and DASH dietary patterns and cardiometabolic risk factors in the PREDIMED-Plus study

    Get PDF
    [Background & aims]: The Portfolio and Dietary Approaches to Stop Hypertension (DASH) diets have been shown to lower cardiometabolic risk factors in randomized controlled trials (RCTs). However, the Portfolio diet has only been assessed in RCTs of hyperlipidemic patients. Therefore, to assess the Portfolio diet in a population with metabolic syndrome (MetS), we conducted a longitudinal analysis of one-year data of changes in the Portfolio and DASH diet scores and their association with cardiometabolic risk factors in Prevención con Dieta Mediterránea (PREDIMED)-Plus trial. [Methods]: PREDIMED-Plus is an ongoing clinical trial (Trial registration: ISRCTN89898) conducted in Spain that includes 6874 older participants (mean age 65 y, 48% women) with overweight/obesity fulfilling at least three criteria for MetS. Data for this analysis were collected at baseline, six months and one year. Adherence to the Portfolio and DASH diet scores were derived from a validated 143-item food frequency questionnaire. We used linear mixed models to examine the associations of 1-SD increase and quartile changes in the diet scores with concomitant changes in cardiometabolic risk factors. [Results]: After adjusting for several potential confounders, a 1-SD increase in the Portfolio diet score was significantly associated with lower HbA1c (β [95% CI]: −0.02% [−0.02, −0.01], P < 0.001), fasting glucose (−0.47 mg/dL [−0.83, −0.11], P = 0.01), triglycerides (−1.29 mg/dL [−2.31, −0.28], P = 0.01), waist circumference (WC) (−0.51 cm [−0.59, −0.43], P < 0.001), and body mass index (BMI) (−0.17 kg/m2 [−0.19, −0.15], P < 0.001). A 1-SD increase in the DASH diet score was significantly associated with lower HbA1c (−0.03% [−0.04, −0.02], P < 0.001), glucose (−0.84 mg/dL [−1.18, −0.51], P < 0.001), triglycerides (−3.38 mg/dL [−4.37, −2.38], P < 0.001), non-HDL-cholesterol (−0.47 mg/dL [−0.91, −0.04], P = 0.03), WC (−0.69 cm [−0.76, −0.60 cm], P < 0.001), BMI (−0.25 kg/m2 [−0.28, −0.26 kg/m2], P < 0.001), systolic blood pressure (−0.57 mmHg [−0.81, −0.32 mmHg], P < 0.001), diastolic blood pressure (−0.15 mmHg [−0.29, −0.01 mmHg], P = 0.03), and with higher HDL-cholesterol (0.21 mg/dL [0.09, 0.34 mg/dL, P = 0.001]). Similar associations were seen when both diet scores were assessed as quartiles, comparing extreme categories of adherence. [Conclusions]: Among older adults at high cardiovascular risk with MetS, greater adherence to the Portfolio and DASH diets showed significant favourable prospective associations with several clinically relevant cardiometabolic risk factors. Both diets are likely beneficial for cardiometabolic risk reduction.The PREDIMED-Plus trial was supported by the Spanish government's official funding agency for biomedical research, ISCIII, through the Fondo de Investigación para la Salud (FIS) and co-funded by European Union ERDF/ESF, “A way to make Europe”/“Investing in your future” (five coordinated FIS projects led by JS-S and JVid, including the following projects: PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI14/00972, PI14/00728, PI14/01471, PI16/00473, PI16/00662, PI16/01873, PI16/01094, PI16/00501, PI16/00533, PI16/00381, PI16/00366, PI16/01522, PI16/01120, PI17/00764, PI17/01183,PI17/00855, PI17/01347, PI17/00525, PI17/01827, PI17/00532, PI17/00215, PI17/01441, PI17/00508, PI17/01732, PI17/00926, PI19/00957, PI19/00386, PI19/00309, PI19/01032, PI19/00576, PI19/00017, PI19/01226, PI19/00781, PI19/01560, and PI19/01332), the Special Action Project entitled: Implementación y evaluación de una intervención intensiva sobre la actividad física Cohorte PREDIMED-Plus grant to JS-S, the European Research Council (Advanced Research Grant 2014–2019, 340918) to MÁM-G, the Recercaixa Grant to JS-S (2013ACUP00194), grants from the Consejería de Salud de la Junta de Andalucía (PI0458/2013, PS0358/2016, and PI0137/2018), a grant from the Generalitat Valenciana (PROMETEO/2017/017), a SEMERGEN grant, and funds from the European Regional Development Fund (CB06/03). This research was also partially funded by EU-H2020 Grant (EAT2BENICE/H2020-SFS-2016-2; Ref 728018). Study resulting from the SLT006/17/00246 grant, funded by the Department of Health of the Generalitat de Catalunya by the call “Acció instrumental de programes de recerca orientats en l'àmbit de la recerca i la innovació en salut”. We thank CERCA Programme/Generalitat de Catalunya for institutional support. This work is partially supported by ICREA under the ICREA Academia programme. IP-G receives a grant from the Spanish Ministry of Education, Culture and Sports (FPU 17/01925). MRBL was supported by “Miguel Servet Type I” program (CP15/00028) from the ISCIII-Madrid (Spain), cofinanced by the Fondo Europeo de Desarrollo Regional-FEDER. AJG was supported by the Nora Martin Fellowship in Nutritional Sciences, the Banting & Best Diabetes Centre Tamarack Graduate Award in Diabetes Research, the Peterborough K.M. Hunter Charitable Foundation Graduate Award and an Ontario Graduate Scholarship. PH-A was supported by a postdoctoral fellowship (Juan de la Cierva-Formación), FJCI-2017–32205, funded by the Ministry of Science and Innovation. RE group has been supported by the ‘Ajut 2017-2021 SGR 1717 from the Generalitat de Catalunya. DJAJ was funded by the Government of Canada through the Canada Research Chair Endowment. JK was supported by the ‘FOLIUM’ programme within the FUTURMed project from the Fundación Instituto de Investigación Sanitaria Illes Balears (financed by 2017 annual plan of the sustainable tourism tax and at 50% with charge to the ESF Operational Program 2014–2020 of the Balearic Islands). JLS was funded by a Diabetes Canada Clinician Scientist Award

    Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicenter, retrospective analysis

    Get PDF
    Background: Anti-programmed death-1 (PD-1) treatment for advanced non-small-cell lung cancer (NSCLC) has improved the survival of patients. However, a substantial percentage of patients do not respond to this treatment. We examined the use of DNA methylation profiles to determine the efficacy of anti-PD-1 treatment in patients recruited with current stage IV NSCLC. Methods: In this multicentre study, we recruited adult patients from 15 hospitals in France, Spain, and Italy who had histologically proven stage IV NSCLC and had been exposed to PD-1 blockade during the course of the disease. The study structure comprised a discovery cohort to assess the correlation between epigenetic features and clinical benefit with PD-1 blockade and two validation cohorts to assess the validity of our assumptions. We first established an epigenomic profile based on a microarray DNA methylation signature (EPIMMUNE) in a discovery set of tumour samples from patients treated with nivolumab or pembrolizumab. The EPIMMUNE signature was validated in an independent set of patients. A derived DNA methylation marker was validated by a single-methylation assay in a validation cohort of patients. The main study outcomes were progression-free survival and overall survival. We used the Kaplan-Meier method to estimate progression-free and overall survival, and calculated the differences between the groups with the log-rank test. We constructed a multivariate Cox model to identify the variables independently associated with progression-free and overall survival. Findings: Between June 23, 2014, and May 18, 2017, we obtained samples from 142 patients: 34 in the discovery cohort, 47 in the EPIMMUNE validation cohort, and 61 in the derived methylation marker cohort (the T-cell differentiation factor forkhead box P1 [FOXP1]). The EPIMMUNE signature in patients with stage IV NSCLC treated with anti-PD-1 agents was associated with improved progression-free survival (hazard ratio [HR] 0·010, 95% CI 3·29 × 10 −4–0·0282; p=0·0067) and overall survival (0·080, 0·017–0·373; p=0·0012). The EPIMMUNE-positive signature was not associated with PD-L1 expression, the presence of CD8+ cells, or mutational load. EPIMMUNE-negative tumours were enriched in tumour-associated macrophages and neutrophils, cancer-associated fibroblasts, and senescent endothelial cells. The EPIMMUNE-positive signature was associated with improved progression-free survival in the EPIMMUNE validation cohort (0·330, 0·149–0·727; p=0·0064). The unmethylated status of FOXP1 was associated with improved progression-free survival (0·415, 0·209–0·802; p=0·0063) and overall survival (0·409, 0·220–0·780; p=0·0094) in the FOXP1 validation cohort. The EPIMMUNE signature and unmethylated FOXP1 were not associated with clinical benefit in lung tumours that did not receive immunotherapy. Interpretation: Our study shows that the epigenetic milieu of NSCLC tumours indicates which patients are most likely to benefit from nivolumab or pembrolizumab treatments. The methylation status of FOXP1 could be associated with validated predictive biomarkers such as PD-L1 staining and mutational load to better select patients who will experience clinical benefit with PD-1 blockade, and its predictive value should be evaluated in prospective studies

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe
    corecore