27 research outputs found

    Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum

    Get PDF
    Highlights: • Crystal structure of the malaria parasite lipocalin • Comparative analysis of lipocalin superfamily members in alveolate genomes • Localization of PfLipocalin to the parasitophorous vacuole and food vacuole • Reverse genetics reveal PfLipocalin function in oxidative damage control Summary: Proteins of the lipocalin family are known to bind small hydrophobic ligands and are involved in various physiological processes ranging from lipid transport to oxidative stress responses. The genome of the malaria parasite Plasmodium falciparum contains a single protein PF3D7_0925900 with a lipocalin signature. Using crystallography and small-angle X-ray scattering, we show that the protein has a tetrameric structure of typical lipocalin monomers; hence we name it P. falciparum lipocalin (PfLCN). We show that PfLCN is expressed in the intraerythrocytic stages of the parasite and localizes to the parasitophorous and food vacuoles. Conditional knockdown of PfLCN impairs parasite development, which can be rescued by treatment with the radical scavenger Trolox or by temporal inhibition of hemoglobin digestion. This suggests a key function of PfLCN in counteracting oxidative stress-induced cell damage during multiplication of parasites within erythrocytes

    A malaria parasite phospholipase facilitates efficient asexual blood stage egress.

    Get PDF
    Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites

    A patatin-like phospholipase is important for mitochondrial function in malaria parasites.

    Get PDF
    Plasmodium parasites rely on a functional electron transport chain (ETC) within their mitochondrion for proliferation, and compounds targeting mitochondrial functions are validated antimalarials. Here, we localize Plasmodium falciparum patatin-like phospholipase 2 (PfPNPLA2, PF3D7_1358000) to the mitochondrion and reveal that disruption of the PfPNPLA2 gene impairs asexual replication. PfPNPLA2-null parasites are hypersensitive to proguanil and inhibitors of the mitochondrial ETC, including atovaquone. In addition, PfPNPLA2-deficient parasites show reduced mitochondrial respiration and reduced mitochondrial membrane potential, indicating that disruption of PfPNPLA2 leads to a defect in the parasite ETC. Lipidomic analysis of the mitochondrial phospholipid cardiolipin (CL) reveals that loss of PfPNPLA2 is associated with a moderate shift toward shorter-chained and more saturated CL species, implying a contribution of PfPNPLA2 to CL remodeling. PfPNPLA2-deficient parasites display profound defects in gametocytogenesis, underlining the importance of a functional mitochondrial ETC during both the asexual and sexual development of the parasite. IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The Developing Human Connectome Project Neonatal Data Release

    Get PDF
    The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed

    PERSPECTIVAS DEL PROCESO DE GLOBALIZACIÓN Y SU INFLUENCIA SOBRE LOS DERECHOS HUMANOS ECONÓMICOS, SOCIALES Y CULTURALES

    Get PDF
    El escenario internacional se encuentra en constante transformación debido a lo que se ha denominado el proceso de “globalización”. Este afecta las relaciones internaciones interestatales e influye en la vida cotidiana de los individuos. El Derecho Internacional y más específicamente el Derecho Internacional de los Derechos Humanos no es ajeno a este proceso. La investigación afirma que nos encontramos frente a una etapa de transnacionalización de los Derechos Humanos, que permite que los individuos cuenten con mayor protección en ámbitos supranacionales. También hace especial mención a los derechos Económicos Sociales y Culturales, analiza el debate sobre el pluralismo jurídico y la eficacia diferencial. En la metodología empleada se revisan fuentes documentales y se realiza un análisis de algunos derechos particulares previstos en el Pacto de Derechos Económicos, Sociales y Culturales. Los planteamientos permiten afirmar que el proceso de globalización ha determinado la transnacionalización de los Derechos Humanos, surgiendo de dicho fenómeno consecuencias positivas y negativas en cuanto a su cumplimiento

    Stochastic gene expression in Arabidopsis thaliana

    No full text
    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner
    corecore