39 research outputs found

    The influence of river-derived particles on estuarine and marine elemental cycles: evidence from lithium isotopes

    Get PDF
    To examine the alteration of river-derived sediments through a large estuary and the implications for elemental cycling and global climate, this study analyses lithium (Li) isotopes and elemental concentrations (e.g., Li, Na, Mg, K, Ca, Fe and Al) of both the dissolved load and different phases of the sediment load (i.e., exchangeable, carbonate, oxide, clay and residue) in the Amazon estuary. The results show that river-derived sediments remove Li from the dissolved load, largely due to cation retention in secondary clays. By modelling the Li mass-balance and isotope fractionation, we estimate that the river-derived sediments gain 3–4 μg/g Li from the dissolved load in the Amazon estuary, with a Li isotope fractionation factor (αclay-solution) of approximately 0.975. Considering the whole Amazon estuary, the river-derived sediments remove around 3.6–4.8 × 109 g/yr of Li from the dissolved load. Specifically, around 1.0–1.7 × 108 g/yr of Li is removed from river water (∼1.8–3.0% of the dissolved Li discharge flux of the Amazon River) and around 3.5–4.7 × 109 g/yr of Li is removed from seawater, which represents a significant sink from the ocean. This estuarine Li sink is likely to be related to continental erosion rates; thus, continental weathering and erosion regimes could influence not only riverine Li input, but could also directly affect the Li sink, leading to a dual control on the Li budget and isotope composition in the ocean

    Lithium isotopes in speleothems: temperature-controlled variation in silicate weathering during glacial cycles

    Get PDF
    Terrestrial chemical weathering of silicate minerals is a fundamental component of the global cycle of carbon and other elements. Past changes in temperature, rainfall, ice cover, sea-level and physical erosion are thought to affect weathering but the relative impact of these controls through time remains poorly constrained. This problem could be addressed if the nature of past weathering could be constrained at individual sites. In this study, we investigate the use of speleothems as local recorders of the silicate weathering proxy, Li isotopes. We analysed 7Li and [Li] in speleothems that formed during the past 200 ka in two well-studied Israeli caves (Soreq and Tzavoa), as well as in the overlying soils and rocks. Leaching and mass balance of these soils and rocks show that Li is dominantly sourced from weathering of the overlying aeolian silicate soils. Speleothem 7Li values are ubiquitously higher during glacials (~23‰) than during interglacials (~10‰), implying more congruent silicate weathering during interglacials (where “congruent” means a high ratio of primary mineral dissolution to secondary mineral formation). These records provide information on the processes controlling weathering in Israel. Consideration of possible processes causing this change of weathering congruency indicates a primary role for temperature, with higher temperatures causing more congruent weathering (lower 7Lispeleo). The strong relationship observed between speleothem d7Li and climate at these locations suggests that Li isotopes may be a powerful tool with which to understand the local controls on weathering at other sites, and could be used to assess the distribution of weathering changes accompanying climate change, such as that of Pleistocene glacial cycles

    The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    Get PDF
    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10[Li]=1.39±0.10 μg/g and [B]=0.19±0.02[B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10[Li]=1.20±0.10 μg/g and [B]=0.077±0.010[B]=0.077±0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl/KCl/K, causes significant elevation of MORB δ11Bδ11B and variable elevation in δ7Liδ7Li. The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than −6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low-Cl/KCl/K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11B=-7.1±0.9‰δ11B=-7.1±0.9‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11Bδ11B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7Li=+3.5±1.0‰δ7Li=+3.5±1.0‰ (mean of five ridge segments; 2SD), excluding high-Cl/KCl/K samples. A significant variation of 1.0–1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7Liδ7Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11B=-9.1±2.4‰δ11B=-9.1±2.4‰. Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6Li6Li in the surface reservoirs, which requires the existence of 7Li7Li-enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean

    Temporal Evolution of Island Arc Magmatism and Its Influence on Long-Term Climate: Insights From the Izu Intra-Oceanic Arc

    Get PDF
    Continental arcs have an episodic magmatic activity over long-time periods, which is believed to modulate long-term climate. Island arcs have also the potential to release large amount of CO2 into the atmosphere, but whether they display an episodic magmatic history throughout their lifespan that contributes to the long-term (>10 Ma) climate changes remains an open question. To set additional constraints on the magmatic history of island arcs, here we examine fresh basalts and mineral-hosted melt inclusions from the Izu intra-oceanic arc, shortly after the eruption of boninites (∼45 Ma ago). Using chemical markers, we show that the long-term magmatic activity of the mature Izu arc has been relatively continuous over its lifespan, except during opening of the Shikoku back-arc Basin (∼23–20 Ma). Because slab dehydration and slab melting trigger decarbonation and carbonate dissolution of the subducted plate, we use slab-fluid markers (Ba/Th, Cs/Th, Cs/Ba, Rb/Th, Th/Nb) to examine the variations of slab-derived CO2 captured by the arc magmas. The long-term steadiness in the arc magmatic activity and in the slab-fluid contribution suggests that the CO2 outgassed during mature arc volcanism may have remained relatively homogeneous for the past 40 Ma in Izu. If worldwide mature island arcs also maintain a relatively steady-state magmatic activity over their lifespan, the long-term CO2 outgassed by these arc volcanoes may be rapidly balanced by chemical weathering and tectonic erosion, which rapidly draw down the atmospheric CO2 (within 200–300 kyr). This rapid negative feedback to long-term volcanic degassing permits to sustain a viable atmospheric CO2 for millions of years. The lack of co-variations between the markers of climate changes (δ13O, δ18C) and the long-term averages of the markers of slab fluids further implies that long-term volcanic degassing of CO2 from mature island arcs might play a minor role in the slide into icehouse climatic conditions. This long-term degassing stability may be, instead, a contributor to maintaining a broadly stable climate over long timescales

    Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum

    Get PDF
    The Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) was a geologically rapid warming period associated with carbon release, which caused a marked increase in the hydrological cycle. Here, we use lithium (Li) isotopes to assess the global change in weathering regime, a critical carbon drawdown mechanism, across the PETM. We find a negative Li isotope excursion of ~3‰ in both global seawater (marine carbonates) and in local weathering inputs (detrital shales). This is consistent with a very large delivery of clays to the oceans or a shift in the weathering regime toward higher physical erosion rates and sediment fluxes. Our seawater records are best explained by increases in global erosion rates of ~2× to 3× over 100 ka, combined with model-derived weathering increases of 50 to 60% compared to prewarming values. Such increases in weathering and erosion would have supported enhanced carbon burial, as both carbonate and organic carbon, thereby stabilizing climate

    Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum

    Get PDF
    The Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) was a geologically rapid warming period associated with carbon release, which caused a marked increase in the hydrological cycle. Here, we use lithium (Li) isotopes to assess the global change in weathering regime, a critical carbon drawdown mechanism, across the PETM. We find a negative Li isotope excursion of ~3‰ in both global seawater (marine carbonates) and in local weathering inputs (detrital shales). This is consistent with a very large delivery of clays to the oceans or a shift in the weathering regime toward higher physical erosion rates and sediment fluxes. Our seawater records are best explained by increases in global erosion rates of ~2× to 3× over 100 ka, combined with model-derived weathering increases of 50 to 60% compared to prewarming values. Such increases in weathering and erosion would have supported enhanced carbon burial, as both carbonate and organic carbon, thereby stabilizing climate

    Precise magnesium isotope measurements in core top planktic and benthic foraminifera

    Get PDF
    This study presents a new methodology to obtain highly precise measurements (±0.1‰) of magnesium isotope ratios in very small samples of foraminiferal carbonate (40–50 μg). Here this technique is used to examine Mg isotopic variation among different species of core top foraminifera over a range of different ambient conditions. Despite the high degree of temperature control on the abundance of elemental Mg incorporated into foraminiferal tests, analyses of surface dwelling Globigerinoides ruber and G. sacculifer from five cores, with associated sea surface temperatures ranging from 20 to 31°C, show no significant temperature-dependent variations in their Mg isotope ratios. Analyses of different size fractions of G. sacculifer show an increase in Mg/Ca with test size but no variation of Mg isotope ratio. In all, nine planktic and benthic species were analyzed; all show identical Mg isotope ratios with a mean of δ26Mg = −4.72‰, apart from small differences in three species, namely O. universa, G. sacculifer (which are both ∼0.4‰ lighter than the average), and P. obliquiloculata (which is ∼0.4‰ heavier). These results highlight the constancy of foraminiferal Mg isotope ratios, despite changing environmental conditions which dominate Mg/Ca variation and arguably affect Ca isotope fractionation. This is an important observation which needs to be included in any model of foraminiferal calcification. The insusceptibility of δ26Mg values to external parameters makes Mg isotopes ideally suited to constraining past variations in the Mg isotope budget of the oceans and the information this carries about the history of oceanic dolomitization, continental weathering, and hydrothermal behavior

    Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    Get PDF
    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion1 or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3, 4, 5, 6. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    Get PDF
    Several susceptibility loci for classical Hodgkin lymphoma (cHL) have been reported, however much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies (GWAS), a new GWAS, and replication totalling 5,314 cases and 16,749 controls. We identify risk loci for all cHL at 6q22.33 (rs9482849, P=1.52 × 10-8) and for nodular sclerosis HL (NSHL) at 3q28 (rs4459895, P=9.43 × 10-17), 6q23.3 (rs6928977, P=4.62 × 10-55 11), 10p14 (rs3781093, P=9.49 × 10-13), 13q34 (rs112998813, P=4.58 × 10-8) and 16p13.13 (rs34972832, P=2.12 × 10-8). Additionally, independent loci within the HLA region are observed for NSHL (rs9269081, HLA-DPB1*03:01, Val86 in HLA-DRB1) and mixed cellularity HL (rs1633096, rs13196329, Val86 in HLA-DRB1). The new and established risk loci localise to areas of active chromatin and show an over-representation of transcription factor binding for determinants of B-cell development and immune response.In the United Kingdom, Bloodwise (LLR; 10021) provided principal funding for the study. Support from Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund) and the Lymphoma Research Trust is also acknowledged. A.S. is supported by a clinical fellowship from Cancer Research UK. For the UK-GWAS, sample and data acquisition were supported by Breast Cancer Now, the European Union and the Lymphoma Research Trust. The UK-GWAS made use of control genotyping data generated by the WTCCC. For further information, please visit the publishr's website
    corecore