35 research outputs found

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.

    A Testing Strategy for the Mass Production of CDMS II Detectors

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs detectors which are capable of simultaneously measuring the ionization and phonon energies deposited by a particle collision. These detectors are 1-cm-thick, 7-cm-diameter crystals of either germanium or silicon with a thin film of aluminum and tungsten patterned on the surface. This presentation discusses the testing regimen that a typical CDMS detector undergoes before it gets approval for final installation at the CDMS II deep site in Soudan, MN which will come online in early 2002. Now that our technology is relatively stable, the main focus of our test facilities is to provide quality control for the mass production of our detectors. First, the critical temperatures of the tungsten and other basic quantities are measured in preparation for iron implantation, which will bring the Tc down to the desired range ( 70 mK). The same basic measurements are taken again after implantation to assure that the correct Tc was achieved. Finally, a detailed map of energy response as a function of position is made to calibrate residual inhomogeneities across th

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    New results from the Cryogenic Dark Matter Search experiment

    Get PDF
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of the neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are \u3e2× lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8 and 20 GeV/c2

    Exclusion Limits on the WIMP-Nucleon Cross-Section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to searchfor WIMPs via their elastic-scattering interactions with nuclei whilediscriminating against interactions of background particles. CDMS data givelimits on the spin-independent WIMP-nucleon elastic-scattering cross-sectionthat exclude unexplored parameter space above 10 GeV~c2^{-2} WIMP mass and, at>84> 84L, the entire 3σ\sigma allowed region for the WIMP signal reported bythe DAMA experiment

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Le Bruit De Fond De Radioactivite Naturelle Du Detecteur Nemo2

    No full text
    corecore