319 research outputs found

    American Teaching Internships and the German Vorbereitungsdienst

    Get PDF
    A look at the German Vorbereitungsdienst program may be instructive for American internship plans for new teachers

    A Proposed Intramural Program for Abl High School, Broadlands, Illinois

    Get PDF

    Responsabilidad patrimonial de las administraciones públicas. Errores sanitarios.

    Get PDF
    In the present work we will study the patrimonial responsibility of the public administration, regulated in the Spanish Constitution, and developed by the current Law 39/2015, specifically when we are faced with sanitary errors, differentiating the type of damage produced, which may be moral or corporal. In order for the patrimonial responsibility of the administration to arise, and also to display all the effects established by law, a series of assumptions must be met, such as the normal or abnormal functioning of the public administration, the production of a compensable damage, the existence of a causal link and absence of force majeure or cause of unpredictability with the knowledge of science at that time. Of special importance, in order to determine responsibility, there are certain figures such as the doctrine of loss of opportunity, the correct use of the lex artis and the presence of informed consent when carrying out a medical intervention. Lastly, once the responsibility has been determined, we move on to the compensation procedure for the damage caused by the normal or abnormal functioning of the public administration, and the due request must be made so that the appropriate procedure can be initiated. To conclude the procedure, two different modes of termination may be given: early or ordinary.En el presente trabajo nos dedicaremos a estudiar la responsabilidad patrimonial de la administración pública, regulada en la Constitución Española, y desarrollada por la Ley 39/2015 y la Ley 40/2015, concretamente cuando nos encontramos ante errores sanitarios, diferenciando el tipo de daño producido, pudiendo ser moral y/o corporal. Para que nazca la responsabilidad patrimonial de la administración, y asimismo despliegue todos los efectos establecidos en la ley, se deberán cumplir una serie de presupuestos, como son el funcionamiento normal o anormal de la administración pública, la producción de un daño resarcible, la existencia de un nexo causal y ausencia de fuerza mayor o causa de imprevisibilidad con los conocimientos de la ciencia en ese momento. Especial importancia cobran, de cara a determinar la responsabilidad, ciertas figuras como son la doctrina de la pérdida de oportunidad, el uso correcto de la lex artis y la presencia de un consentimiento informado a la hora de realizar una intervención médica. Por último, una vez determinada la responsabilidad, daría inicio el procedimiento de indemnización del daño producido por el funcionamiento normal o anormal de la administración pública, debiendo formularse la debida solicitud para que se inicie el procedimiento adecuado. Para concluir el procedimiento, se podrán dar dos diferentes modos de finalización: la anticipada o la ordinaria

    Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide

    Get PDF
    The liquid phase oxidation of cyclohexane to cyclohexanol and cyclohexanone was investigated by synthesizing and testing an array of heterogeneous catalysts comprising: monometallic Ag/MgO, monometallic Pd/MgO and a set of bimetallic AgPd/MgO catalysts. Interestingly, Ag/MgO was capable of a conversion comparable to current industrial routes of ca. 5%, and with a high selectivity (up to 60%) to cyclohexanol, thus making Ag/MgO an attractive system for the synthesis of intermediates for the manufacture of nylon fibres. Furthermore, following the doping of Ag nanoparticles with Pd, the conversion increased up to 10% whilst simultaneously preserving a high selectivity to the alcohol. Scanning transmission electron microscopy and energy dispersive spectroscopy of the catalysts showed a systematic particle size composition variation with the smaller Ag-Pd nanoparticles being statistically richer in Pd. Analysis of the reaction mixture by Electron Paramagnetic Resonance (EPR) spectroscopy coupled with the spin trapping technique showed the presence of large amounts of alkoxy radicals, thus providing insights for a possible reaction mechanism

    Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

    Full text link
    [EN] Furilydenepropanenitrile derivatives, which are useful as monomers, have been obtained in high yields by coupling the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) and the Knoevenagel condensation of DFF with methylene active compounds in a one pot process. The oxidation step was studied using an Fe containing metal-organic framework (MIL-100(Fe), and Fe(BTC)), a Cu containing MOF (Cu3(BTC)(2)), an Fe exchanged HY zeolite and homogeneous Fe salts in the presence of 2,2,6,6-tetramethylpiperidine- 1-oxide (TEMPO) as a cocatalyst, NaNO2 as an additive and oxygen as the terminal oxidant. The results showed that the synthesized MIL-100(Fe) post treated with NH4F was the most active catalyst achieving 100% HMF conversion with 100% selectivity to DFF and can be reused with good success. Additionally, the catalytic system has been applied to the oxidation of different primary and secondary alcohols to aldehydes and ketones under mild reaction conditions with good success. The second step, the Knoevenagel condensation of the obtained DFF with malononitrile or ethyl cyanoacetate, was performed taking advantage of the basicity of the reaction medium.The Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program), the Severo Ochoa Program and the EU-Japan Project NOVACAM are gratefully acknowledged.Rapeyko, A.; Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2017). Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science & Technology. 7(14):3008-3016. https://doi.org/10.1039/c7cy00463jS30083016714Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401dVan Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182kCliment, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492bAmarasekara, A. S., Green, D., & Williams, L. D. (2009). Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin. European Polymer Journal, 45(2), 595-598. doi:10.1016/j.eurpolymj.2008.11.012Hopkins, K. T., Wilson, W. D., Bender, B. C., McCurdy, D. R., Hall, J. E., Tidwell, R. R., … Boykin, D. W. (1998). Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis cariniiAgents. Journal of Medicinal Chemistry, 41(20), 3872-3878. doi:10.1021/jm980230cDel Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S., Tidwell, R. R., Czarny, A., … Perfect, J. R. (1998). Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents. Antimicrobial Agents and Chemotherapy, 42(10), 2495-2502. doi:10.1128/aac.42.10.2495Richter, D. T., & Lash, T. D. (1999). Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4+1’ synthesis of sapphyrins. Tetrahedron Letters, 40(37), 6735-6738. doi:10.1016/s0040-4039(99)01352-0Shimo, T., Ueda, S., Suishu, T., & Somekawa, K. (1995). Intramolecular photocycloadditions of 6,6′-dimethyl-4,4′-polymethylenedioxy-di-2-pyrones. Journal of Heterocyclic Chemistry, 32(3), 727-730. doi:10.1002/jhet.5570320304Lichtenthaler, F. W. (2002). UnsaturatedO- andN-Heterocycles from Carbohydrate Feedstocks. Accounts of Chemical Research, 35(9), 728-737. doi:10.1021/ar010071iAmarasekara, A. S., Green, D., & McMillan, E. (2008). Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catalysis Communications, 9(2), 286-288. doi:10.1016/j.catcom.2007.06.021Partenheimer, W., & Grushin, V. V. (2001). Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal/Bromide Catalysts. Advanced Synthesis & Catalysis, 343(1), 102-111. doi:10.1002/1615-4169(20010129)343:13.0.co;2-qTakagaki, A., Takahashi, M., Nishimura, S., & Ebitani, K. (2011). One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catalysis, 1(11), 1562-1565. doi:10.1021/cs200456tNie, J., Xie, J., & Liu, H. (2013). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 301, 83-91. doi:10.1016/j.jcat.2013.01.007Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G., & Zima, V. (2005). Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General, 289(2), 197-204. doi:10.1016/j.apcata.2005.05.006Navarro, O. C., Canós, A. C., & Chornet, S. I. (2009). Chemicals from Biomass: Aerobic Oxidation of 5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-Pyridine Complexes on Polymeric and Organofunctionalized Mesoporous Supports. Topics in Catalysis, 52(3), 304-314. doi:10.1007/s11244-008-9153-5Sádaba, I., Gorbanev, Y. Y., Kegnaes, S., Putluru, S. S. R., Berg, R. W., & Riisager, A. (2012). Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem, 5(1), 284-293. doi:10.1002/cctc.201200482Yadav, G. D., & Sharma, R. V. (2014). Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 147, 293-301. doi:10.1016/j.apcatb.2013.09.004Fang, R., Luque, R., & Li, Y. (2016). Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 18(10), 3152-3157. doi:10.1039/c5gc03051jBen-Daniel, R., Alsters, P., & Neumann, R. (2001). Selective Aerobic Oxidation of Alcohols with a Combination of a Polyoxometalate and Nitroxyl Radical as Catalysts. The Journal of Organic Chemistry, 66(25), 8650-8653. doi:10.1021/jo0105843Ansari, I. A., & Gree, R. (2002). TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6]. Organic Letters, 4(9), 1507-1509. doi:10.1021/ol025721cGamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668bWang, N., Liu, R., Chen, J., & Liang, X. (2005). NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chemical Communications, (42), 5322. doi:10.1039/b509167eYin, W., Chu, C., Lu, Q., Tao, J., Liang, X., & Liu, R. (2010). Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes. Advanced Synthesis & Catalysis, 352(1), 113-118. doi:10.1002/adsc.200900662Ma, S., Liu, J., Li, S., Chen, B., Cheng, J., Kuang, J., … Yu, S. (2011). Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Advanced Synthesis & Catalysis, 353(6), 1005-1017. doi:10.1002/adsc.201100033Cottier, L., Descotes, G., Viollet, E., Lewkowski, J., & Skowroñski, R. (1995). Oxidation of 5-hydroxymethylfurfural and derivatives to furanaldehydes with 2,2,6,6-tetramethylpiperidine oxide radical - co-oxidant pairs. Journal of Heterocyclic Chemistry, 32(3), 927-930. doi:10.1002/jhet.5570320342Hansen, T. S., Sádaba, I., García-Suárez, E. J., & Riisager, A. (2013). Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 456, 44-50. doi:10.1016/j.apcata.2013.01.042Fang, C., Dai, J.-J., Xu, H.-J., Guo, Q.-X., & Fu, Y. (2015). Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature. Chinese Chemical Letters, 26(10), 1265-1268. doi:10.1016/j.cclet.2015.07.001Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320bNatarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106gCorma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381gWang, P., Zhao, H., Sun, H., Yu, H., chen, S., & Quan, X. (2014). Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv., 4(90), 48912-48919. doi:10.1039/c4ra07028cRapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826cGarcía Márquez, A., Demessence, A., Platero-Prats, A. E., Heurtaux, D., Horcajada, P., Serre, C., … Sanchez, C. (2012). Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration. European Journal of Inorganic Chemistry, 2012(32), 5165-5174. doi:10.1002/ejic.201200710Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027Položij, M., Rubeš, M., Čejka, J., & Nachtigall, P. (2014). Catalysis by Dynamically Formed Defects in a Metal-Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzene-1,3,5-tricarboxylate. ChemCatChem, 6(10), 2821-2824. doi:10.1002/cctc.201402411Morris, R. E., & Čejka, J. (2015). Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 7(5), 381-388. doi:10.1038/nchem.2222Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130KERESSZEGI, C., FERRI, D., MALLAT, T., & BAIKER, A. (2005). On the role of CO formation during the aerobic oxidation of alcohols on Pd/Al2O3: an in situ attenuated total reflection infrared study. Journal of Catalysis, 234(1), 64-75. doi:10.1016/j.jcat.2005.05.019Hui, Z., & Gandini, A. (1992). Polymeric schiff bases bearing furan moieties. European Polymer Journal, 28(12), 1461-1469. doi:10.1016/0014-3057(92)90135-oCliment, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-

    An element through the looking glass: Exploring the Au-C, Au-H and Au-O energy landscape

    Get PDF
    Gold, the archetypal “noble metal”, used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many “unknowns”, and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(III) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands
    corecore