377 research outputs found
A multi-domain decomposition-based Fourier finite element method for the simulation of 3D marine CSEM measurements
We introduce a multi-domain decomposition Fourier finite element (MDDFFE) method for the simulation of three-dimensional (3D) marine controlled source electromagnetic measurement (CSEM). The method combines a 2D finite element (FE) method in two spatial dimensions with a hybrid discretization based on a Fourier FE method along the third dimension. The method employs a secondary field formulation rather than the total field formulation. We apply the MDDFFE method to several synthetic marine CSEM examples exhibiting bathymetry and/or multiple 3D subdomains. Numerical results show that the use of the MDDFFE method reduces the problem size by as much as 87 % in terms of the number of unknowns, without any sacrifice in accuracy
Fast inversion of logging-while-drilling resistivity measurements acquired in multiple wells
This paper introduces a new method for the fast inversion of borehole resistivity measurements acquired in multiple wells using logging-while-drilling (LWD) instruments. There are two key novel contributions. First, we approximate general three-dimensional (3D) transversely isotropic (TI) formations with a sequence of several \stitched" one-dimensional (1D) planarly layered TI sections. This allows us to approximate the solution of rather complex 3D formations using only 1.5D simulations. Second, the developed method supports the simultaneous inversion of measurements acquired in different neighboring wells and/or with different logging instruments.
Numerical experiments performed with realistic 3D synthetic formations confirm the flexibility of the method and the reliability of inversion products. The method yields relative errors below 5% on the model space, and it enables the interpretation of resistivity measurements acquired in multiple wells (e.g., an exploratory, an offset, and a geosteering well) and with any combination of co-axial and/or tri-axial commercial logging measurements acquired with known antennae configurations. Numerical results also indicate that thinly-bedded resistive formations are very sensitive to the presence of noise on the measurements and/or to possible errors on bed boundary locations, while conductive layers are only weakly sensitive to those effects
Quantities of interest for surface based resistivity geophysical measurements
The objective of traditional goal-oriented strategies is to construct an optimal mesh that minimizes the problem size needed to achieve a user prescribed tolerance error for a given quantity of interest (QoI). Typical geophysical resistivity measurement acquisition systems can easily record electromagnetic (EM) fields. However, depending upon the application, EM fields are sometimes loosely related to the quantity that is to be inverted (conductivity or resistivity), and therefore they become inadequate for inversion. In the present work, we study the impact of the selection of the QoI in our inverse problem. We focus on two different acquisition systems: marine controlled source electromagnetic (CSEM), and magnetotellurics (MT). For both applications, numerical results illustrate the benefits of employing adequate QoI. Specifically, the use as QoI of the impedance matrix on MT measurements provides significant computational savings, since one can replace the existing absorbing boundary conditions (BCs) by a homogeneous Dirichlet BC to truncate the computational domain, something that is not possible when considering EM fields as QoI
Control of Structural and Magnetic Properties of Polycrystalline Co2FeGe Films via Deposition and Annealing Temperatures
: Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and postdeposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices
Reaction rate for carbon burning in massive stars
Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for C12+C12 fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of C12+C12 fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5-4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
- …