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Abstract We introduce a multi-domain decomposi-

tion Fourier finite element (MDDFFE) method for

the simulation of three-dimensional (3D) marine con-

trolled source electromagnetic (CSEM) measurements.

The method combines a 2D finite element (FE) method

in two spatial dimensions with a hybrid discretization

based on a Fourier FE method along the third dimen-

sion. The method employs a secondary field formula-

tion rather than the full field formulation. By using

the secondary field formulation, we avoid to numeri-

cally model the source singularities and reduce the ef-

fect of the air layer. We apply the MDDFFE method

to several synthetic marine CSEM examples exhibiting

bathymetry and/or multiple 3D subdomains. Numeri-

cal results show that the use of the MDDFFE method

reduces the problem size by as much as 87% in terms

of the number of unknowns, without any sacrifice in

accuracy.

Keywords Multi-domain decomposition · finite

element method · secondary field formulation · Fourier

series · marine CSEM.

S. A. Bakr
Basque Center for Applied Mathematics (BCAM), Mazarredo
14, E48009 Bilbao, Spain.
Department of Mathematics, Assiut University, Assiut 71516,
Egypt.
E-mail: shaaban.bakr1@gmail.com

D. Pardo
University of the Basque Country (UPV/ EHU), Bilbao,
Spain.
Basque Center for Applied Mathematics (BCAM), Bilbao,
Spain.
Ikerbasque, Bilbao, Spain.
E-mail: dzubiaur@gmail.com

1 Introduction

A map of the Earth’s subsurface is employed in multiple

applications such as CO2 storage, hydrocarbon extrac-

tion, mining, and geothermal energy production, among

others. To obtain such a map, multiple electromagnetic

(EM), elasto-acoustic, and nuclear measurements can

be recorded, both acquired from the surface or by em-

ploying borehole logging instruments. These measure-

ments are subsequently inverted to obtain the material

properties of the Earth’s subsurface, and hence, to im-

age it.

As an example of surface-based measurements, we

consider a marine controlled source EM (CSEM) acqui-

sition system [12]. It consists of a towed electric-dipole

source and a number of seafloor electric and magnetic
field receivers, as illustrated in Fig. 1. The towed source

repeatedly excites electric fields at different locations,

and the response after interacting with the geological

formation is recorded by the receivers. Depending on

the depth of the target area, the transmitter operat-

ing frequencies may range between 0.1 and 10 Hz and

the source-receiver offsets can be up to 10 km, see, e.g.,

[13]. Solving the forward problem then entails simulat-

ing the EM signals for all involved source positions and

frequencies.

Utilization of marine CSEM data for identification

of oil and gas reservoirs and/or monitoring of fluid flows

in a reservoir [7] is often performed through an inversion

process [32,31,16]. Such an inversion process requires

multiple solutions of the EM forward model, which is

often the most time consuming task of any inversion al-

gorithm. The computational cost involved with solving

the forward problem is dominated by the cost of solv-

ing the linear system arising from discretization of the

forward model equations.
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Fig. 1 Marine CSEM acquisition system employed for the
characterization of the Earth’s subsurface.

The forward problem associated with the simula-

tion of three-dimensional (3D) marine CSEM measure-

ments involves a large number of right-hand sides, due

to the multiple source positions. Typically, the num-

ber of sources is in the order of tens to hundreds for

land CSEM studies, while it reaches thousands in mod-

ern large-scale marine CSEM surveys [21]. Puzyrev et

al. [25] evaluated modern direct solvers on large-scale

geophysical simulations that previously were considered

unachievable with these methods.

Direct matrix solvers for large geophysical 3D for-

ward problems [33,28,30,26,24,14,19,8,35,2,15] can be

computationally expensive, both in terms of memory

and CPU time. A way to overcome this limitation is

by reducing the dimensionality of the problem, namely

from 3D modeling to a 2.5D [23], 2D [4] and/or 1D [20]

approximations that are only suitable for particular ge-

ometries.

Recently, Bakr et al. [5] proposed a mixed two do-

main decomposition Fourier finite element (DDFFE)

method for the simulation of 3D marine CSEM mea-

surements. The method combines H(curl) finite ele-

ments with Fourier basis functions. The zones of the

computational domain where it is reasonable to repre-

sent geoelectric properties in 2D are discretized by com-

bining 2D finite elements with a Fourier series [23,3].

The remaining part is discretized utilizing traditional

H(curl) 3D finite element (FE) methods. The result-

ing discretization delivers highly accurate simulations

of marine CSEM problems with arbitrary 3D geome-

tries while it considerably reduces the computational

complexity of full 3D FE simulations for typical ma-

rine CSEM problems. Ren et al. [27] present a domain

decomposition approach for plane wave 3D EM model-

ing using Lagrange multipliers on the interfaces of the

subdomains.

In here, we first extend the DDFFE method on [5]

to the case of multiple (and not just two) subdomains.

Thus, we can consider more realistic geometries that

possibly incorporate bathymetry and/or multiple 3D

regions. The method will be abbreviated MDDFFE.

Additionally, in this work we introduce an “adap-

tive” dimensional decomposition of the model prob-

lem. Thus, when the background model is 1D, we com-

pute a 1.5D semi-analytical solution for the primary

field, and we employ the MDDFFE method over the

secondary field formulation. Similarly, when the back-

ground model is 2D, we employ a 2.5D FE method to

model the primary field. By doing so, we only need

to factorize the 3D system matrix once (when employ-

ing direct solvers), and reuse the same factorization for

all sources. This idea extends significantly traditional

secondary field formulations where the primary field

is computed over a homogeneous space [22], and pro-

vides further savings in the simulations. In particular,

we avoid a 3D modeling of the singularities produced by

the source, and we reduce the air layer effect, since these

effects are mostly reproduced via the primary 1.5D (or

2.5D) field.

The paper is organized as follows: Section 2 derives

the formulation of the proposed MDDFFE method. Im-

plementation details are described in Section 3. Numer-

ical results included in Section 4 validate and analyze

the convergence properties of the method, and also de-

scribe challenging simulations of marine CSEM mea-

surements. Section 5 summarizes the main findings of

this paper.

2 Formulation of the method

In this section, we first introduce time-harmonic

Maxwell’s equations. Then, we split the EM field into

a primary and a secondary component. After that, we

describe the corresponding 3D variational formulation

of the secondary component. Subsequently, we split the

3D computational domain into subdomains exhibiting

different dimensionality, and we introduce a special set

of basis functions within each subdomain. Then, we de-

rive the coupled variational formulation in terms of the

subdomains.

2.1 Time-harmonic Maxwell’s equations

EM phenomena is governed by Maxwell’s equations.

Assuming time variation of the form e−iωt, and no free

electric charges, Maxwell’s equations in the frequency

domain are given by:

∇×E = iωµH, (1)
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∇×H = (σ − iωε) E + J, (2)

∇ · (εE) = 0, (3)

∇ · (µH) = 0, (4)

where ω is the angular frequency, E is the electric field,

H is the magnetic field, µ is the magnetic permeability,

ε is the permittivity, σ is the electric conductivity, J is

the source current distribution, and i =
√
−1. Notice

that when ω 6= 0, divergence equations (3) and (4) are

redundant, and they do not need to be imposed, since

they can be derived from the curl equations (1) and (2)

by taking their divergence.

Pre-multiplying both sides of (1) by µ−1 (we assume

that det(µ) 6= 0 and det(σ− iωε) 6= 0), applying the curl

operator to that equation, and substituting (2) in the

resulting equation, one eliminates H to obtain the so-

called reduced wave equation in terms of the electric

field

∇×
(
µ−1∇×E

)
− iωσ̃E = iωJ, (5)

where σ̃ = σ−iωε. Once E is known after solving (5), H

can be obtained from Faraday’s law, see Eq.(1). To en-

sure uniqueness of the solution, the perfect electrically

conductive boundary condition is imposed:

(n×E) |Γ= 0, (6)

where n is the unit normal vector outward to the

boundary Γ = ∂Ω of a computational domain Ω ⊆
R3. The truncation of the computational domain with

boundary condition (6) does not cause significant reflec-

tions in the solution because the electric field amplitude

decays exponentially fast in the diffusive region as we

move away from the source. Thus, the above boundary

condition can be imposed on a surface located suffi-

ciently far from the source. We consider deep waters to

ignore the effect of the air. For shallow waters, the effect

of the air may become relevant [11], and one could need

to add some type of absorbing boundary condition or

absorbing layer, such as a perfectly matched layer [6].

2.1.1 Secondary field formulation

We decompose the conductivity distribution as the sum

σ = σb + σa. Here, σb indicates a background con-

ductivity distribution and σa denotes the “anomalous”

conductivity. Correspondingly, E can be split into two

parts E = Eb + Ea. Here, Eb denotes the background

field, that is, the field corresponding to conductivity σb,

and Ea represents the part of the field caused by the

existence of the anomaly σa. The same decomposition

can be applied to H.

From the definitions of Eb and Hb, we obtain

∇×Eb = iωµHb, (7)

∇×Hb = σ̃bEb + J, (8)

where σ̃b = σb − iωε. By using the linearity of (1) and

(2) and definition of Ea = E − Eb and Ha = H −Hb,

we obtain

∇×Ea = iωµHa, (9)

∇×Ha = σ̃Ea + σaEb. (10)

Pre-multiplying both sides of (9) by µ−1, applying the

curl operator to the resulting equation and substituting

from (10), one eliminates Ha to obtain

∇×
(
µ−1∇×Ea

)
− iωσ̃Ea = iωσaEb. (11)

2.2 Ea-variational formulation

Pre-multiplying (11) by F∗ (F is an arbitrary test func-

tion and “∗” denotes its conjugate transpose) and inte-

grating over the domain Ω, we obtain∫
Ω

F∗
(
∇× µ−1∇×Ea

)
dΩ − iω

∫
Ω

F∗σ̃EadΩ

= iω

∫
Ω

F∗σaEbdΩ. (12)

The first integral on the left hand side of (12) involv-

ing the curl operator can be transformed using Green’s

theorem to∫
Ω

F∗
(
∇× µ−1∇×Ea

)
dΩ

=

∫
Ω

(∇× F)∗
(
µ−1∇×Ea

)
dΩ

+

∫
Γ

F∗(n× µ−1∇×Ea)dΓ. (13)

The outer boundary integral of (13) is transformed

using vector identity F∗(n × µ−1∇ × G) = −(n ×
F∗)

(
µ−1∇×G

)
to∫

Γ

F∗(n× µ−1∇×Ea)dΓ

= −
∫
Γ

(n× F∗)
(
µ−1∇×Ea

)
dΓ. (14)

We select arbitrary test functions F of the form

F ∈ HΓ (curl;Ω)

= {F ∈ H(curl;Ω) : (n× F) |Γ= 0} . (15)

Here,H(curl;Ω) =
{
F ∈ (L2(Ω))3 : curl F ∈ (L2(Ω))3

}
is the space of vector functions with L2-integrable

curl. Due to the selection in (15), boundary integral

(14) vanishes, and (12) becomes∫
Ω

(∇× F)
∗
µ−1 (∇×Ea) dΩ − iω

∫
Ω

F∗σ̃EadΩ

= iω

∫
Ω

F∗σaEbdΩ. (16)
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2.3 DDFFE formulation with multiple subdomains

In this subsection, we first extend the DDFFE method

[5] to multiple subdomains and then apply it to the

secondary field formulation (16).

We assume that the computational domain Ω =

Ω(x, y, z) can be expressed as a tensor product Ω =

R(y)×Ω2D(x, z), and the cross-sectional area Ω2D can

be split into Ω2D,1 and Ω2D,2. We further split Ω2D,2 as

the union of Ns non-connected subdomains Ωi2D,2, i =

1, ..., Ns, that is, Ω2D,2 = ∪Ns
i=1Ω

i
2D,2. Hence, the com-

putational domain may be written as Ω = Ω1 ∪ Ω2,

where Ω1 = R(y)×Ω2D,1 and Ω2 = R(y)×Ω2D,2. Fur-

thermore, the computational subdomain Ω2 = ∪Ns
i=1Ω

i
2,

where Ωi2 = R(y) × Ωi2D,2, i = 1, ..., Ns. Figure

2 shows an example with four computational subdo-

mains, Ω1, Ω
1
2 , Ω

2
2 and Ω3

2 . The subdomain Ω1 is se-

subdomain,Ω1

subdomain,Ω1
2

subdomain,Ω2
2

subdomain,Ω3
2

σ(x, z)

σ(x, y, z)

σ(x, y, z)
σ(x, y, z)

µ(x, z)

µ(x, y, z)

µ(x, y, z)
µ(x, y, z)

x

z

Fig. 2 xz cross section of an example with four computa-
tional subdomains and the material properties dependence
within them.

lected with constant material properties µ and σ̃, with

respect to the spatial variable y, i.e., µ = µ2D(x, z) and

σ̃ = σ̃2D(x, z). They are, however, allowed to vary in

all three spatial directions in Ω2, that is µ = µ(x, y, z)

and σ̃ = σ̃(x, y, z).

The MDDFFE method expresses the solution of

(16) as the sum of basis functions with support over Ω1

and a different set of basis functions with support over

Ωi2, i = 1, 2, ..., Ns (for the case of two subdomains, see

[5]). This results in the following hybrid representation:

Ea(x, y, z) =

M∑
m=−M

N∑
n=1

E1,mn Φn(x, z)eirmy︸ ︷︷ ︸
Ω1

+

Ns∑
p=1

Kp∑
k=1

E2,kp Ψkp(x, y, z)︸ ︷︷ ︸ . (17)

Ωp2

Here, Ψkp(x, y, z) are basis functions with support over

Ωp2 corresponding to a discretization of H(curl;Ωp2),

while mixed basis functions of the form Φn(x, z)eirmy

are used for the discretization of Ω1, E1,mn and E2,kp

are the unknowns (the so called degrees of freedom).

The y-independent part, Φn(x, z), is a vector-

valued basis function with support over Ω2D,1. The x−
and z−components correspond to a discretization of

H(curl;Ω2D,1), while the y−component is associated

with a discretization of H1(Ω2D,1). Here, H1(Ω) ={
F ∈ L2(Ω) : ∇F ∈ (L2(Ω))3

}
is the space of scalar

functions with L2-integrable gradient. Basically, in the

subdomain Ω1 where materials are constant with re-

spect to y, solution is expected to be smooth in that

direction, and therefore, a high-order method is ex-

pected to converge exponentially fast in that subdo-

main. Therefore, one can employ Fourier basis func-

tions, which are orthogonal, and provide a diagonal

matrix while conserves the exponential convergence be-

havior.

Basis functions eirmy are the spectral Fourier repre-

sentation of the field in the y−direction, with rm = 2πm
T

being the m−th Fourier mode. Selecting the number of

Fourier modes according to the period T = 3d, where

d is the maximum distance between the source (in the

case of equation (11) the source is the target body) and

receivers, we obtained an acceptable accuracy in a pure

2.5D setting [23], and we follow the same prescription

here.

Applying the curl operator to (17), we obtain

∇×Ea =

M∑
m=−M

N∑
n=1

E1,mn(∇rm ×Φn(x, z))eirmy

+

Ns∑
p=1

Kp∑
k=1

E2,kp∇×Ψkp(x, y, z), (18)

where ∇rm :=
(
∂
∂x , irm,

∂
∂z

)
.

We shall restrict ourselves to the Bubnov-Galerkin

method. Selecting F = Φj(x, z)e
irsy, j = 1, ..., N, s =

−M, ...,M , as test functions, and substituting (17) and

(18) into the variational formulation (16), we have

M∑
m=−M

N∑
n=1

asm(Φj ,Φn)E1,mn

+

Ns∑
p=1

Kp∑
k=1

bsp(Φj ,Ψkp)E2,kp

= f1,s(Φj), j = 1, ..., N, s = −M, ...,M, (19)

where

asm(Φj ,Φn)

=

∫
Ω

[
(∇rs ×Φj)

∗
e−irsy

(
µ−1∇rm ×Φn

)
eirmy
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− iωΦ∗je
−irsyσ̃Φne

irmy
]
dΩ, (20)

bsp(Φj ,Ψkp) =

∫
Ω

[
(∇rs ×Φj)

∗
e−irsy

(
µ−1∇×Ψkp

)
−iωΦ∗je

−irsyσ̃Ψkp

]
dΩ, (21)

and

f1,s(Φj) = iω

∫
Ω

Φ∗je
−irsyσaEbdΩ. (22)

Selecting test functions of the form F =

Ψlq(x, y, z), l = 1, ...,Kq, q = 1, ..., Ns, system (19) be-

comes

M∑
m=−M

N∑
n=1

cqm(Ψlq,Φn)E1,mn

+

Ns∑
p=1

Kp∑
k=1

dqp(Ψlq,Ψkp)E2,kp

= f2,q(Ψlq), l = 1, ...,Kq, q = 1, ..., Ns, (23)

where

cqm(Ψlq,Φn) =

∫
Ω

[
(∇×Ψlq)

∗ (
µ−1∇rm ×Φn

)
eirmy

−iωΨ∗lqσ̃Φne
irmy

]
dΩ, (24)

dqp(Ψlq,Ψkp) =

∫
Ω

[
(∇×Ψlq)

∗ (
µ−1∇×Ψkp

)
−iωΨ∗lqσ̃Ψkp

]
dΩ. (25)

and

f2,q(Ψlq) = iω

∫
Ω

Ψ∗lqσ
aEbdΩ. (26)

Utilizing the property that the material properties µ

and σ̃ are y-independent on the support of Φj(x, z), j =

1, ..., N , (20) can be expressed as:

asm(Φj ,Φn) =

∫
Ω2D,1

[
(∇rs ×Φj)

∗ (
µ−12D∇

rm ×Φn

)
−iωΦ∗j σ̃2DΦn

] ∫
R
e−i(rs−rm)ydydΩ2D,1.

By employing the orthogonality of the Fourier basis

functions and the definition of the Kronecker’s delta

function, δrs,rm , the above integrals become

asm(Φj ,Φn) =

∫
Ω2D,1

[
(∇rs ×Φj)

∗ (
µ−12D∇

rm ×Φn

)
−iωΦ∗j σ̃2DΦn

]
2πδrs,rmdΩ2D,1.

From the properties of delta function, namely:

δrs,rm = δ(rs, rm) = δ(
2πs

T
,

2πm

T
) =

T

2π
δ(s,m)

=
T

2π

{
1 s = m,

0 otherwise,

 

 

Ω1
2D,12

Ω2
2D,12

Ω3
2D,12

Fig. 3 Illustration of an example with three regions,
Ωi

2D,12, i = 1, 2, 3, where the coupling of the solution parts

with support in Ω2D,1 and Ωi
2, i = 1, 2, 3, respectively, take

place.

we arrive at
M∑

m=−M

N∑
n=1

asm(Φj ,Φn)E1,mn

= T

N∑
n=1

ass(Φj ,Φn)E1,sn, (27)

where

ass(Φj ,Φn) =

∫
Ω2D,1

[
(∇rs ×Φj)

∗ (
µ−12D∇

rs ×Φn

)
−iωΦ∗j σ̃2DΦn

]
dΩ2D,1.

The coefficients bsp(Φj ,Ψkp) and cqm(Ψlq,Φn) are

associated with coupling of the solution part with sup-

port inΩ1 to the solution part with support inΩ2. Since

there is no overlap between Ω1 and Ω2, the coupling will

occur in the immediate vicinity of their common bound-

ary (only one layer of elements). In our implementation,

the common support of all basis functions involved in

the coupling, denoted as Ωr2D,12, consists of those ele-

ments in Ω1 that are adjacent to Ωr2 , r = 1, .., Ns, see

Fig. 3. The region of integration in (21) and (24) then

reduces to R(y) × Ωr2D,12(x, z), r = 1, ..., Ns. Utilizing

the y-independence of µ and σ̃ over Ω1, one may write:

bsp(Φj ,Ψkp)

=

∫
Ωp

2D,12

[
(∇rs ×Φj)

∗
µ−12D

∫
R
e−irsy (∇×Ψkp) dy

−iωΦ∗j σ̃2D

∫
R
e−irsyΨkpdy

]
dΩp2D,12, (28)

and

cqm(Ψlq,Φn)

=

∫
Ωq

2D,12

[(∫
R

(∇×Ψlq)
∗
eirmydy

)
µ−12D (∇rm ×Φn)
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−iω
(∫

R
Ψ∗lqe

irmydy

)
σ̃2DΦn

]
dΩq2D,12. (29)

By noticing that basis functions Ψkq, k =

1, ...,Kq, q = 1, .., Ns have support over Ωq2 and the

subdomains Ωi2, i = 1, ..., Ns are non-connected, (25)

can be expressed as:

dqq(Ψlq,Ψkq) =

∫
Ωq

2

[
(∇×Ψlq)

∗ (
µ−1∇×Ψkq

)
−iωΨ∗lqσ̃Ψkq

]
dΩq2 . (30)

The right hand sides, (22) and (26), of (19) and (23)

respectively, may be written as:

f1,s(Φj) = iω

∫
Ω1

Φ∗je
−irsyσaEbdΩ1, (31)

and

f2,q(Ψlq) = iω

∫
Ωq

2

Ψ∗lqσ
aEbdΩq2 . (32)

With the above expressions for the coefficients,

ass, bsp, cqm, dqq, f1,s and f2,q, the resulting linear sys-

tem becomes

N∑
n=1

ass(Φj ,Φn)E1,sn +

Ns∑
p=1

Kp∑
k=1

bsp(Φj ,Ψkp)E2,kp

= f1,s(Φj), j = 1, ..., N, s = −M, ...,M, (33)

M∑
m=−M

N∑
n=1

cqm(Ψlq,Φn)E1,mn +

Kq∑
k=1

dqq(Ψlq,Ψkq)E2,kq

= f2,q(Ψlq), l = 1, ...,Kq, q = 1, ..., Ns. (34)

3 Implementation

In this section, we provide some implementation details

about the proposed method.

3.1 1.5D solution

Analytical solutions for 1.5D Maxwell’s equations are

described in [34,20] for the case when the Earth’s sub-

surface can be modeled as a set of horizontally strat-

ified layers with constant materials within each layer.

By taking the Hankel transform [1,17], we obtain the

ordinary differential equation for the Hankel transform

kernel. For a typical CSEM setup with a horizontal elec-

tric dipole (HED) source, the components of the elec-

tromagnetic fields E and H are given as integrals of the

form∫ ∞
0

f(λ)Ji(λr)dλ. (35)

The kernel function f(λ) depends on the subsurface

material properties, and Ji(λ) is an i− th order Bessel

function of the first kind. Derivation of E and H on the

form (35) can be found, e.g., in [34,10].

In most 1.5D EM modelling codes, numerical evalu-

ation of (35) is performed using a digital filter approach

(see, e.g., [1,17]), which provides fast and accurate so-

lutions. Integral (35) can also be approximated using

quadrature methods (see, e.g., [9]), although they are

less popular in geophysical EM applications.

3.2 2.5D and 3D solutions

For a 2D model, the solution method is based on a spa-

tial discretization that combines a 1D Fourier transform

with a 2D FE method [3]. We employ unstructured tri-

angular grids [29] that permit efficient discretizations

of geometrically complex domains.

Finally, for 3D models, we employ the MDDFFE

method. To discretize the model domain Ω, two types

of meshes are constructed for subdomains Ω2D and Ω2.

A 2D mesh is constructed by dividing Ω2D = Ω2D,1 ∪
Ω2D,2 into a number of triangular finite elements. The

3D mesh is obtained by extending a 2D triangular mesh

over Ω2D,2 to a 3D prismatic mesh over Ω2.

In the current version of the MDDFFE code, imple-

mented in MATLAB, we employ first order basis func-

tions for all finite element spaces, and we assume that

material properties are constant within a finite element.

Thus, the coefficients in (33) and (34) can be evaluated

analytically over each element. Summing up the inte-

grals over all elements, the matrix form of (33) and (34)

becomes:A B

C D

E1

E2

 =

F1

F2

 . (36)

Here, D is block diagonal, with Ns blocks, where

each block Ds corresponds to a subdomain of Ωs2, s =

1, ..., Ns of size Ks × Ks. The block diagonal matrix

D ∈ CK×K represents the discrete version of operator

∇×µ−1∇×−iωσ̃ over Ω2, where K =
∑Ns

s=1Ks. Hence,

the sparsity of D corresponds to the sparsity of full 3D

FE methods. The matrix A ∈ C(2M+1)N×(2M+1)N is

block diagonal, with (2M + 1) blocks of size N × N ,

where each block corresponds to a Fourier mode. The

block diagonal structure of A is the result of the

assumed y-independence of µ and σ̃ in Ω1 and the

mutual orthogonality of the Fourier basis functions.

Hence, A represents the discrete version of the operator

∇rs × µ−12D∇rs ×−iωσ̃2D over the domain Ω2D,1 for all

involved Fourier modes. The sparsity of each diagonal

block of A corresponds to the traditional sparsity of 2D

FE methods.
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The rectangular matrix B ∈ C(2M+1)N×K is the dis-

crete version of the operator ∇rs×µ−12D∇×−iωσ̃2D over

Ω2D,12 for all involved Fourier modes all subdomains,

while the rectangular matrix C ∈ CK×(2M+1)N is the

discrete version of the operator ∇×µ−12D∇rm ×−iωσ̃2D
over Ω2D,12 for all involved Fourier modes and all sub-

domains. The matrices B and C are much more sparse

than A and D, since only a tiny fraction of the ele-

ments in Ω2D,1 and Ω2 are involved in the coupling

along the common boundary of these subdomains. The

column vectors F1 ∈ C(2M+1)N×1 and F2 ∈ CK×1 are

the discrete version of the right hand side of equation

(22) over Ω1 and equation (26) over Ω2, respectively.

4 Numerical results

In this section, we first compare the performance and

the relative error of the MDDFFE method when applied

to solve the full field formulation given by equation (5)

and the secondary field formulation (11). We also com-

pare CPU times for full and secondary field formula-

tions versus the relative error in percent. Finally, we

perform more challenging numerical simulations over

geometrically complex scenarios.

In all considered examples, the frequency excited by

the horizontal electric dipole is equal to 0.25 Hz. The

coefficient functions, µ, ε and σ, in Maxwell’s equations,

are assumed to be scalars. µ and ε have constant values,

equal to 4π× 10−7 H/m and 8.85× 10−12 F/m, respec-

tively, while σ will be specified later for each example.

The horizontally stratified 1D geoelectric model

considered here to compute the background field (Eb)

for the first two models consists of an air layer with

conductivity 10−8 S/m, a seawater layer with thick-

ness 1.5 km and conductivity 3.33 S/m, a sea-bottom

layer with thickness 1.1 km and conductivity 1.0 S/m, a

layer with thickness 1.1 km and conductivity 0.5 S/m, a

layer with thickness 500 m and conductivity 0.67 S/m,

and a more resistive basement layer with conductivity

0.2 S/m, see Fig. 4.

4.1 Verification and convergence analysis

The 3D model is derived from the 1D geoelectric one

by including a 3D resistive target rectangular box (con-

ductivity equals to 0.01 S/m) with finite size in all

axes directions. The geoelectric model is illustrated in

Fig. 4. The size of the resistive target (black color) is

3, 000 m, 6, 000 m and 100 m in the x, y and z di-

rections, respectively. The transmitter is located 50 m

above the sea-floor with (x, y) coordinates equal to

(0, 0). There are ten equally spaced receivers located

on the sea-floor at horizontal distances varying from

1 km to 10 km.

The MDDFFE method for the full field formulation

(5) and the secondary field formulation (11) are com-

pared to an integral equation (IE) method (see, e.g.,

[18]).

Figure 5 displays the amplitudes of Ex and Ez as

functions of the horizontal distance between transmit-

ter and receivers for the model problem described in

Fig. 4. For the secondary field formulation, the ampli-

tude of the electric field |Eα| is |Eaα + Ebα|, α = x, z,

which is the sum of the secondary field computed from

equation (16) and the primary field given by the semi-

analytical 1.5D solution. Results obtained with the

MDDFFE method with nine Fourier modes for the full

field formulation (black dashed line with crosses) and

for the secondary field formulation (black solid line) and

IE method (red circles) agree very well.

Next, we show the relative error in percent, γα, be-

tween the IE method and the MDDFFE method for the

full field formulation and for the secondary field formu-

lation, defined as,

γα = 100
||EIEα (ri)| − |EMDDFFE

α (ri)||
|EIEα (ri)|

, (37)

where ri denotes an arbitrary receiver, and α = x, z.

Figure 6 displays the relative error in percent of the am-

plitude of the electric field components γx (left panel)

and γz (right panel) as functions of the number of un-

knowns for the model problem of Fig. 4. The MDDFFE

method for the secondary field formulation delivers very

accurate results with a significantly lower number of

unknowns. About 25% of the unknowns is sufficient to

provide a better accuracy when using the secondary

field formulation. An error level below 10% is acceptable

and corresponds to what it is considered an accurate so-

lution in the context of marine CSEM measurements,

since the anomaly produced by the presence of an oil

box is considerably larger (between 10% and 80%, See

Fig. 7).

Figure 8 displays the relative error in percent as a

function of the number of Fourier modes for the model

problem of Fig. 4. The MDDFFE method for the sec-

ondary field formulation delivers highly accurate results

with a lower number of Fourier modes. About 50% of

the number of Fourier modes is sufficient to provide a

better accuracy when using the secondary field formu-

lation in comparison to the full field formulation.

To summarize, from Figures 6 and 8, we conclude

that the savings associated to the use of the secondary

field formulation in terms of the number of 2D degrees

of freedom and 1D Fourier modes are approximately

factors of 4 and 2, respectively. Thus, the total savings
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Fig. 4 Vertical cross section of the geoelectric model with a 3D target. Only the central portion of the model is shown.
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Fig. 5 Amplitudes of the electric field components Ex (left panel) and Ez (right panel) obtained with IE method (red circles)
and the MDDFFE method with nine Fourier modes for the full field formulation (dashed line with crosses) and for the secondary
field formulation (black solid line) as a function of the horizontal distance between transmitter and receivers.

amount to a factor of approximately 8 in the consid-

ered example. Therefore, about 13% of the unknowns

is sufficient to provide a similar or even better accuracy

when using the secondary field formulation.

Figure 9 displays CPU time in seconds used by the

direct solver for the MDDFFE for the full and sec-

ondary field formulations vs. the relative error in per-

cent, when applied to the model problem in Fig. 4.

Tests were performed on a computer equipped with 16

GB RAM, and using only one core of the available 2.7

GHz dual-core processor. Results demonstrate that the

secondary field formulation reduces the computational

time by several orders of magnitude in order to achieve

a comparable level of accuracy.

4.2 Geophysical applications

We now proceed to assess the performance of the

new MDDFFE method on two 3D geoelectric models

with bathymetry. In these two models, the MDDFFE

method will only be compared to the 3D FE method,

Since the assumptions underlying IE computations

are violated for such geometrically complex geoelectric

models.

4.2.1 Geoelectric model with a 3D target and 3D

bathymetry

The geoelectric 3D model is illustrated in Fig. 10. This

model has two 3D subdomains, namely a 3D target and
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Fig. 7 The relative size of the anomaly (in percent) in terms of the amplitude of the electric field components due to the
presence of an oil box.

that occupied by a 3D bathymetry. The 3D resistive tar-

get (conductivity equals to 0.01 S/m) has a finite size in

all axes directions. The size of the resistive target (black

color) is 3, 000 m, 6, 000 m and 100 m in the x, y and

z directions, respectively. For a 3D bathymetry subdo-

main, we consider a trapezoidal-type hill model on the

seafloor bathymetry, see Fig. 10. The 3D bathymetry

subdomain is 100 m high, 200 m wide at the top and

1000 m wide at the bottom in x-direction and 1000 m

wide in y-direction.

The transmitter is located 100 m above the sea-floor

with (x, y) coordinates equal to (−1500 m, 0 m). The

receivers are located at y = 0 and along the bathymetry

and on the sea-floor at horizontal distances varying

from −3 km to 3 km.

Figure 11 displays the amplitudes of Eax and Eaz at

receivers positions for the model problem of Fig. 10.

Results obtained with the MDDFFE method (black

dashed line with crosses) and the 3D FE method (black

solid line) show a good agreement.
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The number of unknowns used by the MDDFFE

method and the 3D FE method is 375,201 and 677,095,

respectively. The CPU times spent by the MDDFFE

and the 3D FE methods are 1,134 and 3,311 seconds,

respectively. For the MDDFFE method, the number of

unknowns in the 2D subdomain, 3D bathymetry sub-

domain and 3D target subdomain is 315,053, 55,185

and 4,963, respectively. In both methods, we employ

the secondary field based formulation and we used the

1D model to compute the primary field.

4.2.2 Complex 3D model with bathymetry

We now assess the accuracy of the MDDFFE method on

a complex 3D geoelectric model with a 2D bathymetry.

We compute the primary electric field for the 2D back-

ground model using a 2.5D FE method. In this exam-

ple, the 3D geoelectric model is illustrated in Fig. 12.

The resistive target (black color, conductivity equal to

0.01 S/m), as well as the surrounding layers are de-

scribed by a complex geometry. The transmitter is lo-

cated 90 m above the sea-floor with (x, y) coordinates
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equal to (0, 0). The receivers are located at y = 0 and

along the bathymetry at horizontal distances varying

from 1 km to 23 km.

Figure 13 displays the amplitudes of Eax and Eaz
as functions of the horizontal distance between trans-

mitter and receivers for the model problem of Fig. 12.

Results obtained with the MDDFFE method (black

dashed line with crosses) and the 3D FE method (black

solid line) perfectly match, again demonstrating the ac-

curacy of the MDDFFE method.

The numbers of unknowns used by the MDDFFE

method and the 3D FE method are 190,083 and 326,434

unknowns, respectively. The CPU times used by the

MDDFFE and the 3D FE methods are 31 and 1,084 sec-

onds, respectively. This large difference of CPU times

occurs not only because of the savings in terms of the

number of unknowns (a factor of 2), but mainly because

of the sparser structure of the coefficient matrix of the

MDDFFE method (since the amount of time needed to

solve the problem using a direct solver scales approx-
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z (right panel) obtained with the MDDFFE method
(black dashed line with crosses) and the 3D FE method (black solid line) as a function of the horizontal distance between
transmitter and receivers.

imately as N1.5 for the 2.5D FE methods, while N2

for the 3D methods, and N1.5 + N2 for the MDDFFE

method, see the details of the computational complexity

of DDFFE method in [5]). For the MDDFFE method,

the number of unknowns in Ω1 and Ω2 are 185,070 and

5,013 unknowns, respectively. In both methods, we em-

ploy the secondary field based formulation and we used

the 2.5D FE method to compute the primary field. The

number of unknowns and the CPU times used by the

2.5D FE method are 146,433 and 4 seconds, respec-

tively.

5 Conclusions

We have introduced a multi-domain decomposition

Fourier finite element (MDDFFE) method for the sim-

ulation of 3D marine CSEM measurements. Starting

from the full 3D model, a lower dimensional problem
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in the transverse direction has been considered. The

resulting lower dimensional problem is solved using a

1.5D semi-analytical solution in the case of a 1D model,

and a 2.5D FE method in the case of a 2D model, while

higher dimensional effects are incorporated into the so-

lution by solving for the secondary field selecting the

previously computed lower dimensional solution as the

primary field. We compared the performance and er-

ror of the secondary field formulation versus that ob-

tained for the full field formulation. The accuracy of the

MDDFFE method for both formulations was demon-

strated to be superior to the one of traditional 3D

FE methods through numerical comparison for typi-

cal 3D CSEM models. We showed numerically that the

MDDFFE method for the secondary field formulation

delivered very accurate results with a significantly lower

number of unknowns when compared to the full field

formulation. For the considered examples, about 13% of

the unknowns is sufficient to provide a similar or even

better accuracy when using the secondary field formu-

lation. In some cases, the time savings were as large as

a factor of 30. We have applied the method to two chal-

lenging synthetic examples exhibiting bathymetry and

multiple 3D subdomains.
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