906 research outputs found

    Low momentum muon identification in the ATLAS detector at the LHC

    Get PDF

    Trigger Selection Software for Beauty Physics in ATLAS

    Get PDF
    The unprecedented rate of beauty production at the LHC will yield high statistics for measurements such as CP violation and Bs oscillation and will provide the opportunity to search for and study very rare decays, such as Bâ ï­ï­ .The trigger is a vital component for this work and must select events containing the channels of interest from a huge background in order to reduce the 40 MHz bunch crossing rate down to 100-200 Hz for recording, of which only a part will be assigned to B-physics. Requiring a single or di-muon trigger provides the first stage of the B-trigger selection. Track reconstruction is then performed in the Inner Detector, either using the full detector, at initial luminosity, or within Regions of Interest identified by the first level trigger at higher luminosities. Based on invariant mass, combinations of tracks are selected as likely decay products of the channel of interest and secondary vertex fits are performed. Events are selected based on properties such as fit quality and invariant mass. We present fast vertex reconstruction algorithms suitable for use in the second level trigger and event filter (level three). We discuss the selection software and the flexible trigger strategies that will enable ATLAS to pursue a B-physics programme from the first running at a luminosity of about 1031 cm-2s-1 through to the design luminosity running at 1034 cm-2s-1

    The Certification of ATLAS Thin Gap Chambers Produced in Israel and China

    Full text link
    Thin gap chambers (TGCs) are used for the muon trigger system in the forward region of the LHC experiment ATLAS. A TGC consists of a plane of closely spaced wires maintained at positive high voltage, sandwiched between resistive grounded cathode planes with an anode wire to cathode plane gap distance smaller than the wire-to-wire spacing. The TGCs are expected to provide a trigger signal within 25 ns of the bunch spacing of the LHC accelerator, with an efficiency exceeding 95%, while exposed to an effective photon and neutron background ranging from 30 to 500 Hz/cm2. About 2,500 out of the 3,600 ATLAS TGCs are being produced at the Weizmann institute in Israel, and in Shandong University in China. Once installed in the ATLAS detector the TGCs will be inaccessible. A vigorous production quality control program is therefore implemented at the production sites. Furthermore, after chamber completion, a thorough program of quality assurance is implemented to ensure the efficient performance of the chambers during more than ten years of operation in the LHC high rate environment. This program consists of a detailed mapping of the detectors response using cosmic rays, as well as checking the chambers behavior using a high rate radiation source. An aging test performed on five chambers in a serial gas connection is presented. Finally the results of the chambers certification tests performed at CERN before the installation in ATLAS are described.Comment: Presented at 2004 IEEE Nuclear Science Symposium 2004, Rome, Oct 200

    The Cosmic Ray Hodoscopes for Testing Thin Gap Chambers at the Technion and Tel Aviv University

    Full text link
    Thin gap chambers (TGCs) are built for the muon trigger chambers in the endcap region of the LHC experiment ATLAS. More than 2500 ATLAS TGCs are being produced at the Weizmann institute in Israel, and in Shandong University in China. Detailed testing of these chambers is performed at the Technion and at the Tel-Aviv University. Two cosmic ray hodoscopes for testing the operation of these detectors were built in Israel. In these hodoscopes the response of the chambers to energetic cosmic ray muons is recorded and analyzed. The hodoscopes measure the exact time and space location of the cosmic ray hit and read out the chambers which are being tested to verify that they produce a corresponding signal within the required time interval. The cosmic ray hodoscopes built at the Technion and at the Tel Aviv University for the test of ATLAS TGCs are described. The mechanical structure, readout electronics, data acquisition and operating scheme are presented. Typical TGC test results are presented and discussed

    Implementation and performance of the ATLAS Trigger Muon "Vertical Slice"

    Get PDF
    The ATLAS (A Toroidal LHC ApparatuS) trigger system is designed to keep high effiency for interesting events while achieving a rejection of low transverse momentum (p_T) physics of about 10^7, thus reaching the ~200Hz data storage capability of the Data Aquisition system. A three levels structure has been implemented for this purpose, as described in this work for the case of the muon trigger system. After describing the implementation, some performance results are presented in terms of final trigger rates, resolutions, efficiencies, background rejection and algorithm latency

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
    corecore