71 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Designing for Preregistration in Practice: Multiple Norms and Purposes

    No full text
    The replication crisis—a failure to replicate foundational studies—has sparked a conversation in psychology, HCI, and beyond about scientific reliability. To address the crisis, researchers increasingly adopt preregistration: the practice of documenting research plans before conducting a study. Done properly, preregistration reduces bias from taking exploratory findings as confirmatory. It is crucial to treat preregistration, often an online form/template, as a user-centered design problem to ensure preregistration achieves its intended goal. To understand preregistration in practice, we conducted 14 semi-structured interviews with preregistration users (researchers) who ranged in seniority and experience. We found that norms for using preregistration are uncertain, and identified four purposes people have for using preregistration. We describe how the different purposes could explain conflicting designs of existing preregistration templates, and how they may even undermine the original purpose of preregistration. We suggest opportunities to explicitly resolve these conflicts to support the different purposes of preregistration

    Microfat Grafting In Nasal Surgery

    No full text
    Background: Injectable fillers are sometimes necessary to correct slight skin irregularities. However, there have been reports of necrosis after injection of alloplastic materials and heterogeneous transplants. On the other hand, the advantages of autogenous tissue grafts over those fillers are well established. Volumetric reshaping of the face with autologous tissue injection is a popular and reliable method with good long-term results. However, procedures performed on the fragile skin of the nose are prone to complications. Objectives: The author conducted a study of injectable autologous microfat grafting to the nose in patients with secondary nasal deformities. Methods: During a 5-year period, 313 patients who had secondary nasal deformities with slight skin irregularities or severe nasal skin damage were treated with microfat grafting. At each patient's first injection session, excess harvested fat was cryopreserved for subsequent injection. To correct minor irregularities, 0.3 to 0.8 mL of microfat was injected during each session; for major irregularities or defects, 1 to 6 mL was required for each session. Results: One to 3 injections of microfat provided satisfactory results in all patients who had minor irregularities. For patients with multiple and severe irregularities, 3 to 6 injections were necessary and resulted in high patient satisfaction. In another group of patients, with severe traumatic skin damage, 6 to 16 injections were necessary for reconstruction. After repeated injections, each patient's skin damage was repaired. Conclusions: Autologous microfat injection appears to be safe and effective for correcting slight irregularities of the nose.WoSScopu

    Population Differentiation as an Indicator of Recent Positive Selection in Humans: An Empirical Evaluation

    No full text
    We have evaluated the extent to which SNPs identified by genomewide surveys as showing unusually high levels of population differentiation in humans have experienced recent positive selection, starting from a set of 32 nonsynonymous SNPs in 27 genes highlighted by the HapMap1 project. These SNPs were genotyped again in the HapMap samples and in the Human Genome Diversity Project–Centre d'Etude du Polymorphisme Humain (HGDP–CEPH) panel of 52 populations representing worldwide diversity; extended haplotype homozygosity was investigated around all of them, and full resequence data were examined for 9 genes (5 from public sources and 4 from new data sets). For 7 of the genes, genotyping errors were responsible for an artifactual signal of high population differentiation and for 2, the population differentiation did not exceed our significance threshold. For the 18 genes with confirmed high population differentiation, 3 showed evidence of positive selection as measured by unusually extended haplotypes within a population, and 7 more did in between-population analyses. The 9 genes with resequence data included 7 with high population differentiation, and 5 showed evidence of positive selection on the haplotype carrying the nonsynonymous SNP from skewed allele frequency spectra; in addition, 2 showed evidence of positive selection on unrelated haplotypes. Thus, in humans, high population differentiation is (apart from technical artifacts) an effective way of enriching for recently selected genes, but is not an infallible pointer to recent positive selection supported by other lines of evidence

    Object-based classification of terrestrial laser scanning point clouds for landslide monitoring

    No full text
    Terrestrial laser scanning (TLS) is often used to monitor landslides and other gravitational mass movements with high levels of geometric detail and accuracy. However, unstructured TLS point clouds lack semantic information, which is required to geomorphologically interpret the measured changes. Extracting meaningful objects in a complex and dynamic environment is challenging due to the objects' fuzziness in reality, as well as the variability and ambiguity of their patterns in a morphometric feature space. This work presents a point‐cloud‐based approach for classifying multitemporal scenes of a hillslope affected by shallow landslides. The 3D point clouds are segmented into morphologically homogeneous and spatially connected parts. These segments are classified into seven target classes (scarp, eroded area, deposit, rock outcrop and different classes of vegetation) in a two‐step procedure: a supervised classification step with a machine‐learning classifier using morphometric features, followed by a correction step based on topological rules. This improves the final object extraction considerably
    • 

    corecore