2,127 research outputs found

    Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics

    Full text link
    Using the geodesic distance on the nn-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1\mathbb{R}^{n+1}, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in nn-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the nn-sphere is isometric to the standard nn-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the nn-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics

    Weighted Poisson-Delaunay Mosaics

    Full text link
    Slicing a Voronoi tessellation in Rn\mathbb{R}^n with a kk-plane gives a kk-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the kk-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in Rn\mathbb{R}^n, we study the expected number of simplices in the kk-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a byproduct, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbb{R}^n

    The Minimum Expectation Selection Problem

    Full text link
    We define the min-min expectation selection problem (resp. max-min expectation selection problem) to be that of selecting k out of n given discrete probability distributions, to minimize (resp. maximize) the expectation of the minimum value resulting when independent random variables are drawn from the selected distributions. We assume each distribution has finitely many atoms. Let d be the number of distinct values in the support of the distributions. We show that if d is a constant greater than 2, the min-min expectation problem is NP-complete but admits a fully polynomial time approximation scheme. For d an arbitrary integer, it is NP-hard to approximate the min-min expectation problem with any constant approximation factor. The max-min expectation problem is polynomially solvable for constant d; we leave open its complexity for variable d. We also show similar results for binary selection problems in which we must choose one distribution from each of n pairs of distributions.Comment: 13 pages, 1 figure. Full version of paper presented at 10th Int. Conf. Random Structures and Algorithms, Poznan, Poland, August 200

    Three-dimensional alpha shapes

    Full text link
    Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ``shape'' of the set. For that purpose, this paper introduces the formal notion of the family of α\alpha-shapes of a finite point set in \Real^3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter \alpha \in \Real controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size nn in time O(n2)O(n^2), worst case. A robust implementation of the algorithm is discussed and several applications in the area of scientific computing are mentioned.Comment: 32 page

    Topological Data Analysis with Bregman Divergences

    Get PDF
    Given a finite set in a metric space, the topological analysis generalizes hierarchical clustering using a 1-parameter family of homology groups to quantify connectivity in all dimensions. The connectivity is compactly described by the persistence diagram. One limitation of the current framework is the reliance on metric distances, whereas in many practical applications objects are compared by non-metric dissimilarity measures. Examples are the Kullback-Leibler divergence, which is commonly used for comparing text and images, and the Itakura-Saito divergence, popular for speech and sound. These are two members of the broad family of dissimilarities called Bregman divergences. We show that the framework of topological data analysis can be extended to general Bregman divergences, widening the scope of possible applications. In particular, we prove that appropriately generalized Cech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized Cech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory

    The Morse theory of \v{C}ech and Delaunay complexes

    Full text link
    Given a finite set of points in Rn\mathbb R^n and a radius parameter, we study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the \v{C}ech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.Comment: 21 pages, 2 figures, improved expositio

    Delaunay Hodge Star

    Full text link
    We define signed dual volumes at all dimensions for circumcentric dual meshes. We show that for pairwise Delaunay triangulations with mild boundary assumptions these signed dual volumes are positive. This allows the use of such Delaunay meshes for Discrete Exterior Calculus (DEC) because the discrete Hodge star operator can now be correctly defined for such meshes. This operator is crucial for DEC and is a diagonal matrix with the ratio of primal and dual volumes along the diagonal. A correct definition requires that all entries be positive. DEC is a framework for numerically solving differential equations on meshes and for geometry processing tasks and has had considerable impact in computer graphics and scientific computing. Our result allows the use of DEC with a much larger class of meshes than was previously considered possible.Comment: Corrected error in Figure 1 (columns 3 and 4) and Figure 6 and a formula error in Section 2. All mathematical statements (theorems and lemmas) are unchanged. The previous arXiv version v3 (minus the Appendix) appeared in the journal Computer-Aided Desig

    Clear and Compress: Computing Persistent Homology in Chunks

    Full text link
    We present a parallelizable algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by G\"unther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we improve the performance through parallelized computation.Comment: This result was presented at TopoInVis 2013 (http://www.sci.utah.edu/topoinvis13.html
    • …
    corecore