79 research outputs found

    Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    Get PDF
    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd

    Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC.</p> <p>Methods</p> <p>Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589.</p> <p>Results</p> <p>The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays.</p> <p>Conclusions</p> <p>We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.</p

    Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    Get PDF
    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Search for anomalous single top quark production in association with a photon in pp collisions at √s=8 TeV

    Get PDF

    Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV

    Get PDF
    Peer reviewe

    Suppression and azimuthal anisotropy of prompt and nonprompt J/psi production in PbPb collisions at root S-NN=2.76 TeV

    Get PDF
    The nuclear modification factor RAA and the azimuthal anisotropy coefficient v2 of prompt and nonprompt (i.e. those from decays of b hadrons) J/ψ mesons, measured from PbPb and pp collisions at sNN−−−√=2.76 TeV at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta pT>6.5 GeV/c and rapidity |y|<2.4 , extending down to pT=3 GeV/c in the 1.6<|y|<2.4 range. The v2 of prompt J/ψ is found to be nonzero, but with no strong dependence on centrality, rapidity, or pT over the full kinematic range studied. The measured v2 of nonprompt J/ψ is consistent with zero. The RAA of prompt J/ψ exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or pT in the fiducial range. The nonprompt J/ψ RAA shows a suppression which becomes stronger as rapidity or pT increases. The v2 and RAA of open and hidden charm, and of open charm and beauty, are compared

    Erratum to: Comparison of the Z/γ* + jets to γ + jets cross sections in pp collisions at √s = 8

    Get PDF
    Erratum to: JHEP10(2015)128. ArXiv ePrint: 1505.06520. The online version of the original article can be found at http://dx.doi.org/10.1007/JHEP10(2015)128

    The CMS trigger system

    Get PDF
    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described

    Inclusive and differential measurements of the t(t)over-bar charge asymmetry in pp collisions at root s=8 TeV

    Get PDF
    The charge asymmetry is measured in proton–proton collisions at a centre-of-mass energy of . The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 fb−1. Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be . In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the system are studied. For the first time at the LHC, the measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of . All measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model
    corecore