268 research outputs found

    Growth and characterisation of titanium sulphide nanostructures by surface-assisted vapour transport methods; from trisulphide ribbons to disulphide nanosheets

    Get PDF
    Surface Assisted Chemical Vapour Transport (SACVT) methods have been employed to grow nanostructures of titanium disulphide (TiS2) and titanium trisulphide (TiS3). SACVT reactions occur between titanium and sulphur powders to form TiSx species transported in the vapour phase to grow nanometric flower-like structures on titanium-coated silica substrates. The evolution of structure and composition has been followed by powder X-ray diffraction, electron microscopy and Raman spectroscopy. At 1 : 2 Ti : S ratios, the size and shape of the hexagonal 1T-TiS2 titanium disulphide structures formed can be varied from flower-like growths with 'petals' formed from nanosheets 10 nm thick to platelets microns across. Increasing the proportion of sulphur (Ti : S 1 : 4) enables TiS3 flower-like structures composed of radiating nanoribbons to grow at elevated temperatures without decomposition to TiS2. TEM/SAED suggests that individual trisulphide ribbons grow along the [010] direction. Magnetic properties of the disulphide nanomaterials have been determined using SQUID magnetometry and Raman spectra for disulphides suggest that their crystal and electronic structures may be more complex than expected for bulk, stoichiometric, CdI2-structured TiS2

    Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

    Get PDF
    Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery

    How big is too big? Critical Shocks for Systemic Failure Cascades

    Full text link
    External or internal shocks may lead to the collapse of a system consisting of many agents. If the shock hits only one agent initially and causes it to fail, this can induce a cascade of failures among neighoring agents. Several critical constellations determine whether this cascade remains finite or reaches the size of the system, i.e. leads to systemic risk. We investigate the critical parameters for such cascades in a simple model, where agents are characterized by an individual threshold \theta_i determining their capacity to handle a load \alpha\theta_i with 1-\alpha being their safety margin. If agents fail, they redistribute their load equally to K neighboring agents in a regular network. For three different threshold distributions P(\theta), we derive analytical results for the size of the cascade, X(t), which is regarded as a measure of systemic risk, and the time when it stops. We focus on two different regimes, (i) EEE, an external extreme event where the size of the shock is of the order of the total capacity of the network, and (ii) RIE, a random internal event where the size of the shock is of the order of the capacity of an agent. We find that even for large extreme events that exceed the capacity of the network finite cascades are still possible, if a power-law threshold distribution is assumed. On the other hand, even small random fluctuations may lead to full cascades if critical conditions are met. Most importantly, we demonstrate that the size of the "big" shock is not the problem, as the systemic risk only varies slightly for changes of 10 to 50 percent of the external shock. Systemic risk depends much more on ingredients such as the network topology, the safety margin and the threshold distribution, which gives hints on how to reduce systemic risk.Comment: 23 pages, 7 Figure

    Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation

    Full text link
    Acoustic emission is used here to study melting and solidification of embedded indium particles in the size range of 0.2 to 3 um in diameter and to show that dislocation generation occurs in the aluminum matrix to accommodate a 2.5% volume change. The volume averaged acoustic energy produced by indium particle melting is similar to that reported for bainite formation upon continuous cooling. A mechanism of prismatic loop generation is proposed to accommodate the volume change and an upper limit to the geometrically necessary increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the Al-17In alloy. Thermomechanical processing is also used to change the size and distribution of the indium particles within the aluminum matrix. Dislocation generation with accompanied acoustic emission occurs when the melting indium particles are associated with grain boundaries or upon solidification where the solid-liquid interfaces act as free surfaces to facilitate dislocation generation. Acoustic emission is not observed for indium particles that require super heating and exhibit elevated melting temperatures. The acoustic emission work corroborates previously proposed relaxation mechanisms from prior internal friction studies and that the superheat observed for melting of these micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces - Recent Progress and Future Study" TMS 201

    Cognitive and Biochemical Processes in Depressed Adult Outpatients: a Test of the Circular Process Model

    Get PDF
    The circular process model is a psychobiological model of depression, in which it is postulated that catecholamines and negative cognitions interact to influence depression. Since its publication, there have been no empirical tests to support or refute the model. This study tested the model in 92 depressed adult outpatients with non-bipolar non-psychotic depression. There were no significant bivariate correlations among the biochemical and cognitive measures. However, the interactive model was supported by results of two out of three hierarchical regression analyses, in which the biochemical-by-cognitive interactive terms significantly predicted depression after the main effects of each variable were accounted for. These findings show sufficient evidence in support of the Circular Process Model to warrant further testing over the treatment period

    Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.

    Get PDF
    BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore