72 research outputs found

    Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke:Pooled analysis of randomized trials

    Get PDF
    Background and Purpose: Lacunar stroke accounts for ≈25% of ischemic stroke, but optimal antiplatelet regimen to prevent stroke recurrence remains unclear. We aimed to evaluate the efficacy of antiplatelet agents in secondary stroke prevention after a lacunar stroke. Methods: We searched MEDLINE, Embase, and the Cochrane library for randomized controlled trials that reported risk of recurrent stroke or death with antiplatelet therapy in patients with lacunar stroke. We used random effects meta-analysis and evaluated heterogeneity with I2. Results: We included 17 trials with 42 234 participants (mean age 64.4 years, 65% male) and follow up ranging from 4 weeks to 3.5 years. Compared with placebo, any single antiplatelet agent was associated with a significant reduction in recurrence of any stroke (risk ratio [RR] 0.77, 0.62–0.97, 2 studies) and ischemic stroke (RR 0.48, 0.30–0.78, 2 studies), but not for the composite outcome of any stroke, myocardial infarction, or death (RR 0.89, 0.75–1.05, 2 studies). When other antiplatelet agents (ticlodipine, cilostazol, and dipyridamole) were compared with aspirin, there was no consistent reduction in stroke recurrence (RR 0.91, 0.75–1.10, 3 studies). Dual antiplatelet therapy did not confer clear benefit over monotherapy (any stroke RR 0.83, 0.68–1.00, 3 studies; ischemic stroke RR 0.80, 0.62–1.02, 3 studies; composite outcome RR 0.90, 0.80–1.02, 3 studies). Conclusions: Our results suggest that any of the single antiplatelet agents compared with placebo in the included trials is adequate for secondary stroke prevention after lacunar stroke. Dual antiplatelet therapy should not be used for long-term stroke prevention in this stroke subtype

    Clinical significance of cerebral microbleeds on MRI

    Get PDF
    __Background:__ Cerebral microbleeds can confer a high risk of intracerebral hemorrhage, ischemic stroke, death and dementia, but estimated risks remain imprecise and often conflicting. We investigated the association between cerebral microbleeds presence and these outcomes in a large meta-analysis of all published cohorts including: ischemic stroke/TIA, memory clinic, “high risk” elderly populations, and healthy individuals in population-based studies. __Methods:__ Cohorts (with > 100 participants) that assessed cerebral microbleeds presence on MRI, with subsequent follow-up (≥3 months) were identified. The association between cerebral microbleeds and each of the outcomes (ischemic stroke, intracerebral hemorrhage, death, and dementia) was quantified using random effects models of (a) unadjusted crude odds ratios and (b) covariate-adjusted hazard rations. Results: We identified 31 cohorts (n = 20,368): 19 ischemic stroke/TIA (n = 7672), 4 memory clinic (n = 1957), 3 high risk elderly (n = 1458) and 5 population-based cohorts (n = 11,722). Cerebral microbleeds were associated with an increased risk of ischemic stroke (OR: 2.14; 95% CI: 1.58–2.89 and adj-HR: 2.09; 95% CI: 1.71–2.57), but the relative increase in future intracerebral hemorrhage risk was greater (OR: 4.65; 95% CI: 2.68–8.08 and adj-HR: 3.93; 95% CI: 2.71–5.69). Cerebral microbleeds were an independent predictor of all-cause mortality (adj-HR: 1.36; 95% CI: 1.24–1.48). In three population-based studies, cerebral microbleeds were independently associated with incident dementia (adj-HR: 1.35; 95% CI: 1.00–1.82). Results were overall consistent in analyses stratified by different populations, but with different degrees of heterogeneity. __Conclusions:__ Our meta-analysis shows that cerebral microbleeds predict an increased risk of stroke, death, and dementia and provides up-to-date effect sizes across different clinical settings. These pooled estimates can inform clinical decisions and trials, further supporting cerebral microbleeds role as biomarkers of underlying subclinical brain pathology in research and clinical settings

    Effects of oral anticoagulation in people with atrial fibrillation after spontaneous intracranial haemorrhage (COCROACH): prospective, individual participant data meta-analysis of randomised trials

    Get PDF
    Background: The safety and efficacy of oral anticoagulation for prevention of major adverse cardiovascular events in people with atrial fibrillation and spontaneous intracranial haemorrhage are uncertain. We planned to estimate the effects of starting versus avoiding oral anticoagulation in people with spontaneous intracranial haemorrhage and atrial fibrillation. // Methods: In this prospective meta-analysis, we searched bibliographic databases and trial registries using the strategies of a Cochrane systematic review (CD012144) on June 23, 2023. We included clinical trials if they were registered, randomised, and included participants with spontaneous intracranial haemorrhage and atrial fibrillation who were assigned to either start long-term use of any oral anticoagulant agent or avoid oral anticoagulation (ie, placebo, open control, another antithrombotic agent, or another intervention for the prevention of major adverse cardiovascular events). We assessed eligible trials using the Cochrane Risk of Bias tool. We sought data for individual participants who had not opted out of data sharing from chief investigators of completed trials, pending completion of ongoing trials in 2028. The primary outcome was any stroke or cardiovascular death. We used individual participant data to construct a Cox regression model of the time to the first occurrence of outcome events during follow-up in the intention-to-treat dataset supplied by each trial, followed by meta-analysis using a fixed-effect inverse-variance model to generate a pooled estimate of the hazard ratio (HR) with 95% CI. This study is registered with PROSPERO, CRD42021246133. // Findings: We identified four eligible trials; three were restricted to participants with atrial fibrillation and intracranial haemorrhage (SoSTART [NCT03153150], with 203 participants) or intracerebral haemorrhage (APACHE-AF [NCT02565693], with 101 participants, and NASPAF-ICH [NCT02998905], with 30 participants), and one included a subgroup of participants with previous intracranial haemorrhage (ELDERCARE-AF [NCT02801669], with 80 participants). After excluding two participants who opted out of data sharing, we included 412 participants (310 [75%] aged 75 years or older, 249 [60%] with CHA2DS2-VASc score ≤4, and 163 [40%] with CHA2DS2-VASc score >4). The intervention was a direct oral anticoagulant in 209 (99%) of 212 participants who were assigned to start oral anticoagulation, and the comparator was antiplatelet monotherapy in 67 (33%) of 200 participants assigned to avoid oral anticoagulation. The primary outcome of any stroke or cardiovascular death occurred in 29 (14%) of 212 participants who started oral anticoagulation versus 43 (22%) of 200 who avoided oral anticoagulation (pooled HR 0·68 [95% CI 0·42–1·10]; I2=0%). Oral anticoagulation reduced the risk of ischaemic major adverse cardiovascular events (nine [4%] of 212 vs 38 [19%] of 200; pooled HR 0·27 [95% CI 0·13–0·56]; I2=0%). There was no significant increase in haemorrhagic major adverse cardiovascular events (15 [7%] of 212 vs nine [5%] of 200; pooled HR 1·80 [95% CI 0·77–4·21]; I2=0%), death from any cause (38 [18%] of 212 vs 29 [15%] of 200; 1·29 [0·78–2·11]; I2=50%), or death or dependence after 1 year (78 [53%] of 147 vs 74 [51%] of 145; pooled odds ratio 1·12 [95% CI 0·70–1·79]; I2=0%). // Interpretation: For people with atrial fibrillation and intracranial haemorrhage, oral anticoagulation had uncertain effects on the risk of any stroke or cardiovascular death (both overall and in subgroups), haemorrhagic major adverse cardiovascular events, and functional outcome. Oral anticoagulation reduced the risk of ischaemic major adverse cardiovascular events, which can inform clinical practice. These findings should encourage recruitment to, and completion of, ongoing trials. // Funding: British Heart Foundation

    Effects of oral anticoagulation in people with atrial fibrillation after spontaneous intracranial haemorrhage (COCROACH): prospective, individual participant data meta-analysis of randomised trials

    Get PDF
    Background - The safety and efficacy of oral anticoagulation for prevention of major adverse cardiovascular events in people with atrial fibrillation and spontaneous intracranial haemorrhage are uncertain. We planned to estimate the effects of starting versus avoiding oral anticoagulation in people with spontaneous intracranial haemorrhage and atrial fibrillation. Methods - In this prospective meta-analysis, we searched bibliographic databases and trial registries using the strategies of a Cochrane systematic review (CD012144) on June 23, 2023. We included clinical trials if they were registered, randomised, and included participants with spontaneous intracranial haemorrhage and atrial fibrillation who were assigned to either start long-term use of any oral anticoagulant agent or avoid oral anticoagulation (ie, placebo, open control, another antithrombotic agent, or another intervention for the prevention of major adverse cardiovascular events). We assessed eligible trials using the Cochrane Risk of Bias tool. We sought data for individual participants who had not opted out of data sharing from chief investigators of completed trials, pending completion of ongoing trials in 2028. The primary outcome was any stroke or cardiovascular death. We used individual participant data to construct a Cox regression model of the time to the first occurrence of outcome events during follow-up in the intention-to-treat dataset supplied by each trial, followed by meta-analysis using a fixed-effect inverse-variance model to generate a pooled estimate of the hazard ratio (HR) with 95% CI. This study is registered with PROSPERO, CRD42021246133. Findings - We identified four eligible trials; three were restricted to participants with atrial fibrillation and intracranial haemorrhage (SoSTART [NCT03153150], with 203 participants) or intracerebral haemorrhage (APACHE-AF [NCT02565693], with 101 participants, and NASPAF-ICH [NCT02998905], with 30 participants), and one included a subgroup of participants with previous intracranial haemorrhage (ELDERCARE-AF [NCT02801669], with 80 participants). After excluding two participants who opted out of data sharing, we included 412 participants (310 [75%] aged 75 years or older, 249 [60%] with CHA2DS2-VASc score ≤4, and 163 [40%] with CHA2DS2-VASc score >4). The intervention was a direct oral anticoagulant in 209 (99%) of 212 participants who were assigned to start oral anticoagulation, and the comparator was antiplatelet monotherapy in 67 (33%) of 200 participants assigned to avoid oral anticoagulation. The primary outcome of any stroke or cardiovascular death occurred in 29 (14%) of 212 participants who started oral anticoagulation versus 43 (22%) of 200 who avoided oral anticoagulation (pooled HR 0·68 [95% CI 0·42–1·10]; I2=0%). Oral anticoagulation reduced the risk of ischaemic major adverse cardiovascular events (nine [4%] of 212 vs 38 [19%] of 200; pooled HR 0·27 [95% CI 0·13–0·56]; I2=0%). There was no significant increase in haemorrhagic major adverse cardiovascular events (15 [7%] of 212 vs nine [5%] of 200; pooled HR 1·80 [95% CI 0·77–4·21]; I2=0%), death from any cause (38 [18%] of 212 vs 29 [15%] of 200; 1·29 [0·78–2·11]; I2=50%), or death or dependence after 1 year (78 [53%] of 147 vs 74 [51%] of 145; pooled odds ratio 1·12 [95% CI 0·70–1·79]; I2=0%). Interpretation - For people with atrial fibrillation and intracranial haemorrhage, oral anticoagulation had uncertain effects on the risk of any stroke or cardiovascular death (both overall and in subgroups), haemorrhagic major adverse cardiovascular events, and functional outcome. Oral anticoagulation reduced the risk of ischaemic major adverse cardiovascular events, which can inform clinical practice. These findings should encourage recruitment to, and completion of, ongoing trials. Funding - British Heart Foundation

    Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies

    Get PDF
    BACKGROUND: Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies. METHODS: For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10(-6)) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10(-8)), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants. FINDINGS: We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05-1·12, p=1·48 × 10(-8); minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity-a marker of cerebral small vessel disease-in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2-32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b(-/-) cerebral vessels show decreased smooth muscle cell and pericyte coverage. INTERPRETATION: We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms

    Contribution of Common Genetic Variants to Risk of Early-Onset Ischemic Stroke

    Get PDF
    Background and Objectives Current genome-wide association studies of ischemic stroke have focused primarily on late-onset disease. As a complement to these studies, we sought to identify the contribution of common genetic variants to risk of early-onset ischemic stroke. Methods We performed a meta-analysis of genome-wide association studies of early-onset stroke (EOS), ages 18-59 years, using individual-level data or summary statistics in 16,730 cases and 599,237 nonstroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late-onset stroke (LOS) and compared polygenic risk scores (PRS) for venous thromboembolism (VTE) between EOS and LOS. Results We observed genome-wide significant associations of EOS with 2 variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared with LOS. The odds ratio (OR) for rs529565, tagging O1, was 0.88 (95% confidence interval [CI]: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using PRSs, we observed that greater genetic risk for VTE, another prothrombotic condition, was more strongly associated with EOS compared with LOS (p = 0.008). Discussion The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.Peer reviewe

    Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: A united approach

    Get PDF
    Item does not contain fulltextCerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE)

    Genetic variation at 16q24.2 is associated with small vessel stroke.

    Get PDF
    OBJECTIVE: Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises one quarter of all ischemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown that younger-onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger-onset SVS population, to identify novel associations with stroke. METHODS: We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on messenger RNA (mRNA) expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain. RESULTS: We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (odds ratio [OR; 95% confidence interval {CI}] = 1.16 [1.10-1.22]; p = 3.2 × 10-9 ). The lead single-nucleotide polymorphism (rs12445022) was also associated with cerebral white matter hyperintensities (OR [95% CI] = 1.10 [1.05-1.16]; p = 5.3 × 10-5 ; N = 3,670), but not intracerebral hemorrhage (OR [95% CI] = 0.97 [0.84-1.12]; p = 0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p = 9.4 × 10-7 ) and DNA methylation at probe cg16596957 in whole blood (p = 5.3 × 10-6 ). INTERPRETATION: 16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. Ann Neurol 2017;81:383-394.Matthew Traylor is funded by the NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. Hugh Markus is supported by an NIHR Senior Investigator award and his work is supported by NIHR Comprehensive Biomedical Research Unit funding awarded to Cambridge University Hospitals Trust. Cathryn Lewis receives salary support from the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. Collection of the UK Young Lacunar Stroke DNA Study (DNA Lacunar) was primarily supported by the Wellcome Trust (WT072952) with additional support from the Stroke Association (TSA 2010/01). Genotyping of the DNA Lacunar samples was supported by a Stroke Association Grant (TSA 2013/01). Robin Lemmens is a senior clinical investigator of FWO Flanders. Martin Dichgans received funding from the DFG (CRC 1123, B3) and a EU Horizon 2020 grant (agreement No 666881 SVDs@target). The TwinsUK study was funded in part by the European Research Council (ERC 250157), and from the TwinsUK resource, which receives support from the Wellcome Trust and the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. The SiGN study was funded by a cooperative agreement grant from the US National Institute of Neurological Disorders and Stroke, National Institutes of Health (U01 NS069208)

    Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.

    Get PDF
    OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore