1,304 research outputs found

    Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants

    Get PDF
    Long-term packaging of miniaturized, flexible implantable medical devices is essential for the next generation of medical devices. Polymer materials that are biocompatible and flexible have attracted extensive interest for the packaging of implantable medical devices, however realizing these devices with long-term hermeticity up to several years remains a great challenge. Here, polyimide (PI) based hermetic encapsulation was greatly improved by atomic layer deposition (ALD) of a nanoscale-thin, biocompatible sandwich stack of HfO2/Al2O3/HfO2 (ALD-3) between two polyimide layers. A thin copper film covered with a PI/ALD-3/PI barrier maintained excellent electrochemical performance over 1028 days (2.8 years) during acceleration tests at 60 °C in phosphate buffered saline solution (PBS). This stability is equivalent to approximately 14 years at 37 °C. The coatings were monitored in situ through electrochemical impedance spectroscopy (EIS), were inspected by microscope, and were further analyzed using equivalent circuit modeling. The failure mode of ALD Al2O3, ALD-3, and PI soaking in PBS is discussed. Encapsulation using ultrathin ALD-3 combined with PI for the packaging of implantable medical devices is robust at the acceleration temperature condition for more than 2.8 years, showing that it has great potential as reliable packaging for long-term implantable devices

    Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s) and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations.</p> <p>Methods</p> <p>A finite element model (FEM) of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs) along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats.</p> <p>Results</p> <p>Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration.</p> <p>Conclusions</p> <p>A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.</p

    Effects of topping and non-topping on growth-regulating hormones of flue-cured tobacco (Nicotiana tabacum L.)—a proteomic analysis

    Get PDF
    IntroductionUntil now, the mechanism underlying the impact of topping on hormone regulation in tobacco plants remains unclear, and most studies investigating the hormone signaling pathways in plants rely on genes or transcriptional pathways.MethodsThis study examines the regulatory mechanisms of hormones in the roots and leaves of tobacco plants with and without topping at the protein level.ResultsThe results demonstrate that, compared with non-topped plants, topping leads to a decrease in the levels of IAA (auxin), ABA (abscisic acid), and GA (gibberellin) hormones in the leaves, whereas the content of the JA (jasmonic acid) hormone increases. Furthermore, in the roots, topping results in an increase in the levels of IAA, ABA, and JA hormones, along with a decrease in GA content. In the leaves, a total of 258 significantly different proteins were identified before and after topping, with 128 proteins upregulated and 130 proteins downregulated. In the roots, there were 439 proteins with significantly different quantities before and after topping, consisting of 211 upregulated proteins and 228 downregulated proteins. Notably, these proteins were closely associated with the metabolic and biosynthetic pathways of secondary metabolites, as indicated by functional categorization.ConclusionsWhen integrating the hormone changes and the proteomics results, it is evident that topping leads to increased metabolic activity and enhanced hormone synthesis in the root system. This research provides a theoretical foundation for further investigations into the regulation and signaling mechanisms of hormones at the protein level before and after topping in plants

    Evaluation of enteral formulas for nutrition, health, and quality of life among stroke patients

    Get PDF
    Enteral nutritional support has been used via tube feeding for dysphagic stroke patients. We performed long and short term trials to evaluate the effects of commercial enteral nutritional supports on nutrition and health in stroke patients (mRS = 3~5) and quality of life in their caregivers. For a long term study, we recruited chronic (≥ 1 yrs) stroke patients (n = 6) and administered them 6 cans/day (1,200 kcal) of the commercial enteral formula N for 6 months according to IRB-approved protocol. We collected peripheral blood at 0, 2, 4 and 6 months. For a short term study, we recruited acute (≤ 3 months) stroke patients (n = 12) and randomly administered them two different commercial enteral formulas, N or J, for 2 weeks. We collected their blood at 0, 4, 7 and 14 day of the administration. Blood samples were analyzed to quantify 19 health and nutritional biomarkers and an oxidative stress biomarker, malondialdehyde (MDA). In order to evaluate quality of life, we also obtained the sense of competence questionnaire (SCQ) from all caregivers at 'before' and 'after trials'. As results, the enteral formula, N, improved hemoglobin and hematocrit levels in the long term trial and maintained most of biomarkers within normal ranges. The SCQ levels of caregivers were improved in the long term treatment (P < 0.05). In a case of the short term study, both of enteral formulas were helpful to maintain nutritional status of the patients. In addition, MDA levels were decreased in the acute patients following formula consumption (0.05 < P < 0.1). Most of health and nutrition outcomes were not different, even though there is a big difference in price of the two products. Thus, we evaluate the formula N has equal nutritional efficacy compared to the formula J. In addition, long term use of enteral formula N can be useful to health and nutrition of stroke patients, and the quality of life for their caregivers

    Development of monotonic neuronal tuning in the monkey inferotemporal cortex through long-term learning of fine shape discrimination

    Get PDF
    Visual expertise in discriminating fine differences among a group of similar objects can be obtained through extensive long-term training. Here we investigated the neural bases of this superior capability. The inferotemporal cortex, located at the final stage along the ventral visual pathway, was a candidate site in monkeys because cells there respond to various complex features of objects. To identify the changes that underlie the development of visual expertise in fine discrimination, we created a set of parametrically designed object stimuli and compared the stimulus selectivity of inferotemporal cells between two different training histories. One group of recordings was conducted after the monkeys had been extensively trained for fine discrimination (fine-discrimination period) and the other after the monkeys had been exposed only for coarse discrimination (coarse-discrimination period). We found that the tuning of responses recorded in the fine-discrimination period was more monotonic in the stimulus parameter space. The stimuli located at the extreme in the parameter space evoked the maximum responses in a larger proportion of cells and the direction of response decrease in the parameter space was more consistent. Moreover, the stimulus arrangement reconstructed from the responses recorded during the fine-discrimination period was more similar to the original stimulus arrangement. These results suggest that visual expertise could be based on the development, in the inferotemporal cortex, of neuronal selectivity monotonically tuned over the parameter space of the object images

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants.</p> <p>Methods</p> <p>The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from <it>Caesalpinia spinosa </it>was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity.</p> <p>Results</p> <p>We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC<sub>50</sub>) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin.</p> <p>Conclusions</p> <p>Our results suggest that a natural fraction extracted from <it>Caesalpinia spinosa </it>in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia.</p

    Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T

    Get PDF
    Background: Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T-1 relaxation.Methods: Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI.Results: LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and similar to 330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size.Conclusion: The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI

    MRI Findings for Frozen Shoulder Evaluation: Is the Thickness of the Coracohumeral Ligament a Valuable Diagnostic Tool?

    Get PDF
    Recent studies have demonstrated that the coracohumeral ligament (CHL) is shortened and thickened in a frozen shoulder. We analyzed the rate in CHL visualization between patients with frozen shoulder and normal volunteers using Magnetic Resonance Imaging (MRI) to determine the CHL thickness in the patients with a frozen shoulder.>0.05).MR Imaging is a satisfactory method for CHL depiction, and a thickened CHL is highly suggestive of frozen shoulder

    Universal relation between magnetic resonance and superconducting gap in unconventional superconductors

    Full text link
    Unconventional superconductors such as the high-transition temperature cuprates, heavy-fermion systems and iron arsenide-based compounds exhibit antiferromagnetic fluctuations that are dominated by a resonance, a collective spin-one excitation mode in the superconducting state. Here we demonstrate the existence of a universal linear relation, Er2ΔEr \propto 2\Delta, between the magnetic resonance energy (Er) and the superconducting pairing gap (Δ\Delta), spanning two orders of magnitude in energy. This relation is valid for materials that range from being close to the Mott-insulating limit to being on the border of itinerant magnetism. Since the common excitonic picture of the resonance has not led to such universality, our observation suggests a much deeper connection between antiferromagnetic fluctuations and unconventional superconductivity.Comment: 19 pages, 5 figures, 2 table
    corecore