131 research outputs found

    Experimental Oral Transmission of Chronic Wasting Disease to Reindeer (Rangifer tarandus tarandus)

    Get PDF
    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, remains prevalent in North American elk, white-tailed deer and mule deer. A natural case of CWD in reindeer (Rangifer tarandus tarandus) has not been reported despite potential habitat overlap with CWD-infected deer or elk herds. This study investigates the experimental transmission of CWD from elk or white-tailed deer to reindeer by the oral route of inoculation. Ante-mortem testing of the three reindeer exposed to CWD from white-tailed deer identified the accumulation of pathological PrP (PrPCWD) in the recto-anal mucosa associated lymphoid tissue (RAMALT) of two reindeer at 13.4 months post-inoculation. Terminal CWD occurred in the two RAMALT-positive reindeer at 18.5 and 20 months post-inoculation while one other reindeer in the white-tailed deer CWD inoculum group and none of the 3 reindeer exposed to elk CWD developed disease. Tissue distribution analysis of PrPCWD in CWD-affected reindeer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, the gastrointestinal tract, neuroendocrine tissues and cardiac muscle. Analysis of prion protein gene (PRNP) sequences in the 6 reindeer identified polymorphisms at residues 2 (V/M), 129 (G/S), 138 (S/N) and 169 (V/M). These findings demonstrate that (i) a sub-population of reindeer are susceptible to CWD by oral inoculation implicating the potential for transmission to other Rangifer species, and (ii) certain reindeer PRNP polymorphisms may be protective against CWD infection

    Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability

    Get PDF
    Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos

    Understanding the everyday designer in organisations

    Get PDF
    This paper builds upon the existing concept of an everyday designer as a non-expert designer who carries out design activities using available resources in a given environment. It does so by examining the design activities undertaken by non-expert, informal, designers in organisations who make use of the formal and informal technology already in use in organisations while designing to direct, influence, change or transform the practices of people in the organisation. These people represent a cohort of designers who are given little attention in the literature on information systems, despite their central role in the formation of practice and enactment of technology in organisations. The paper describes the experiences of 18 everyday designers in an academic setting using three concepts: everyday designer in an organisation, empathy through design and experiencing an awareness gap. These concepts were constructed through the analysis of in-depth interviews with the participants. The paper concludes with a call for tool support for everyday designers in organisations to enable them to better understand the audience for whom they are designing and the role technology plays in the organisation

    Objective quantification of nanoscale protein distributions

    Get PDF
    Nanoscale distribution of molecules within small subcellular compartments of neurons critically influences their functional roles. Although, numerous ways of analyzing the spatial arrangement of proteins have been described, a thorough comparison of their effectiveness is missing. Here we present an open source software, GoldExt, with a plethora of measures for quantification of the nanoscale distribution of proteins in subcellular compartments (e.g. synapses) of nerve cells. First, we compared the ability of five different measures to distinguish artificial uniform and clustered patterns from random point patterns. Then, the performance of a set of clustering algorithms was evaluated on simulated datasets with predefined number of clusters. Finally, we applied the best performing methods to experimental data, and analyzed the nanoscale distribution of different pre- and postsynaptic proteins, revealing random, uniform and clustered sub-synaptic distribution patterns. Our results reveal that application of a single measure is sufficient to distinguish between different distributions

    Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids

    Get PDF
    Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease

    Rationale and study design of the prospective, longitudinal, observational cohort study “rISk strAtification in end-stage renal disease” (ISAR) study

    Get PDF
    Background: The ISAR study is a prospective, longitudinal, observational cohort study to improve the cardiovascular risk stratification in endstage renal disease (ESRD). The major goal is to characterize the cardiovascular phenotype of the study subjects, namely alterations in micro-and macrocirculation and to determine autonomic function. Methods/design: We intend to recruit 500 prevalent dialysis patients in 17 centers in Munich and the surrounding area. Baseline examinations include: (1) biochemistry, (2) 24-h Holter Electrocardiography (ECG) recordings, (3) 24-h ambulatory blood pressure measurement (ABPM), (4) 24 h pulse wave analysis (PWA) and pulse wave velocity (PWV), (5) retinal vessel analysis (RVA) and (6) neurocognitive testing. After 24 months biochemistry and determination of single PWA, single PWV and neurocognitive testing are repeated. Patients will be followed up to 6 years for (1) hospitalizations, (2) cardiovascular and (3) non-cardiovascular events and (4) cardiovascular and (5) all-cause mortality. Discussion/conclusion: We aim to create a complex dataset to answer questions about the insufficiently understood pathophysiology leading to excessively high cardiovascular and non-cardiovascular mortality in dialysis patients. Finally we hope to improve cardiovascular risk stratification in comparison to the use of classical and non-classical (dialysis-associated) risk factors and other models of risk stratification in ESRD patients by building a multivariable Cox-Regression model using a combination of the parameters measured in the study

    Search for supersymmetry in events with four or more leptons in √s =13 TeV pp collisions with ATLAS

    Get PDF
    Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex
    corecore