34 research outputs found

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    The role of ARF6 in biliary atresia

    Get PDF
    Background & Aims: Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA). Methods: To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6). Results: Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3' flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94 x 10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57 x 10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58 x 10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x 10-7), ERK/MAPK and CREB canonical pathways (p<1 x 10-34), and functional networks for cellular development and proliferation (p<1 x 10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA. Conclusions: The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary dysgenesis as a basis for BA, and also suggests a role for EGFR signaling in BA pathogenesis

    The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations

    Get PDF
    Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on the available evidence on the species׳ pharmacology and safety, we highlight ways in which their therapeutic potential can be properly harnessed for possible integration into the country׳s healthcare system. Materials and methods: Ethnobotanical information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants used in diabetes management, in which the place of use and/or sample collection was identified as Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches. Results: The hypoglycemic effect of over a hundred out of the 115 plants reviewed in this paper is backed by preclinical experimental evidence, either in vivo or in vitro. One-third of the plants have been studied for their mechanism of action, while isolation of the bioactive constituent(s) has been accomplished for twenty three plants. Some plants showed specific organ toxicity, mostly nephrotoxic or hepatotoxic, with direct effects on the levels of some liver function enzymes. Twenty eight plants have been identified as in vitro modulators of P-glycoprotein and/or one or more of the cytochrome P450 enzymes, while eleven plants altered the levels of phase 2 metabolic enzymes, chiefly glutathione, with the potential to alter the pharmacokinetics of co-administered drugs. Conclusion: This review, therefore, provides a useful resource to enable a thorough assessment of the profile of plants used in diabetes management so as to ensure a more rational use. By anticipating potential toxicities or possible herb–drug interactions, significant risks which would otherwise represent a burden on the country׳s healthcare system can be avoided

    Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    No full text
    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits

    Concentrations of radon and its daughter products in and around Bangalore city

    No full text
    Indoor radon and its progeny levels were measured during 2005–06 in Bangalore rural district and in Bangalore City by using Solid State Nuclear Track Detector (SSNTD)-based twin cup dosemeters, and the activity of radium present in soils and rocks was measured by using HPGe detector. Fifty dwellings of different types were chosen for the measurement. The dosimeters containing the detector (LR-115 Type II Film) used in each house were fixed 2 m above the floor. After an exposure time of 90 days, films were etched to reveal tracks. From the track density, the concentrations of radon were evaluated. The value of radon concentration in the indoor air near granite quarries varies from 55 to 300 Bq.m−3 with a median of 155 Bq.m−3 and its progeny varies from 0.24 to 19.6 mWL with a median of 8.4 mWL. In Bangalore City, the concentration of radon varies from 18.4 to 110 Bq.m−3 with a median of 45 Bq.m−3 and its progeny varies from 1.62 to 11.24 mWL with a median of 4.15 mWL. Higher concentrations of radon and its progeny were observed in granite quarries compared with Bangalore City. The main reason for the higher indoor radon and its progeny concentration is due to the mining activity and the types of the bedrock. The concentration of radon mainly depends on the activity of radium present in soils and rocks and the types of building materials used. The activity of radium varies in granitic regions of Bangalore rural district from 42.0 to 163.6 Bq.kg−1 with a median of 112.8 Bq.kg−1. The concentrations of indoor radon and its daughter products and equivalent effective dose are discussed

    Amberlyst-15 catalyzed synthesis of novel thiophene–pyrazoline derivatives: Spectral and crystallographic characterization and anti-inflammatory and antimicrobial evaluation

    No full text
    Increasing instances of antimicrobial drug resistance and Inflammation-mediated disorders requires the design and synthesis of new small-molecules with higher affinity and specificity for their potential targets to serve as antibiotics or anti-inflammatory drugs, respectively. The current study presents the synthesis of a series of chalcones, 3(a–h) by the reaction of 3-methylthiophene-2-carbaldehyde, 1 and acetophenones, 2(a–h) by Claisen–Schmidt approach. The chalcones were efficiently transformed into thienyl-pyrazolines, 5(a–h) by their reaction with thiosemicarbazide hydrochloride, 4 in the presence of Amberlyst-15 as a catalyst in acetonitrile at room temperature. Alternatively, the compounds 5(a–h) were prepared by conventional method using acetic acid (40%) medium. Structures were characterized by spectral and single crystal X-ray diffraction studies. Preliminary assessment of the anti-inflammatory properties of the compounds showed that, amongst the series, compounds 5b and 5c have excellent anti-inflammatory activities. Further, compound 5c showed excellent activity against Escherichia coli (MIC, 15 µg/mL), Bacillus subtilis (MIC, 20 µg/mL), Aspergillus niger (MIC, 20 µg/mL), and Aspergillus flavus (MIC 15 µg/mL), respectively. Compounds 5a and 5b were also found to be active against the tested microorganisms
    corecore