66 research outputs found

    A Multicentre, Pragmatic, Parallel Group, Randomised Controlled Trial to Compare the Clinical and Cost-Effectiveness of Three Physiotherapy-Led Exercise Interventions for Knee Osteoarthritis in Older Adults: The BEEP Trial Protocol (ISRCTN: 93634563)

    Get PDF
    Background Exercise is consistently recommended for older adults with knee pain related to osteoarthritis. However, the effects from exercise are typically small and short-term, likely linked to insufficient individualisation of the exercise programme and limited attention to supporting exercise adherence over time. The BEEP randomised trial aims to improve patients’ short and long-term outcomes from exercise. It will test the overall effectiveness and cost-effectiveness of two physiotherapy-led exercise interventions (Individually Tailored Exercise and Targeted Exercise Adherence) to improve the individual tailoring of, and adherence to exercise, compared with usual physiotherapy care. Methods/design Based on the learning from a pilot study (ISRCTN 23294263), the BEEP trial is a multi-centre, pragmatic, parallel group, individually randomised controlled trial, with embedded longitudinal qualitative interviews. 500 adults in primary care, aged 45 years and over with knee pain will be randomised to 1 of 3 treatment groups delivered by fully trained physiotherapists in up to 6 NHS services. These are: Usual Physiotherapy Care (control group consisting of up to 4 treatment sessions of advice and exercise), Individually Tailored Exercise (an individualised, supervised and progressed lower-limb exercise programme) or Targeted Exercise Adherence (supporting patients to adhere to exercise and to engage in general physical activity over the longer-term). The primary outcomes are pain and function as measured by the Western Ontario and McMaster Osteoarthritis index. A comprehensive range of secondary outcomes are also included. Outcomes are measured at 3, 6 (primary outcome time-point), 9, 18 and 36 months. Data on adverse events will also be collected. Semi-structured, qualitative interviews with a subsample of 30 participants (10 from each treatment group) will be undertaken at two time-points (end of treatment and 12 to 18 months later) and analysed thematically. Discussion This trial will contribute to the evidence base for management of older adults with knee pain attributable to osteoarthritis in primary care. The findings will have important implications for healthcare commissioners, general practitioners and physiotherapy service providers and it will inform future education of healthcare practitioners. It may also serve to delay or prevent some individuals from becoming surgical candidates

    Optimizing CRE and PhiC31 mediated recombination in Aedes aegypti

    Get PDF
    Introduction: Genetic manipulation of Aedes aegypti is key to developing a deeper understanding of this insects’ biology, vector-virus interactions and makes future genetic control strategies possible. Despite some advances, this process remains laborious and requires highly skilled researchers and specialist equipment.Methods: Here we present two improved methods for genetic manipulation in this species. Use of transgenic lines which express Cre recombinase and a plasmid-based method for expressing PhiC31 when injected into early embryos.Results: Use of transgenic lines which express Cre recombinase allowed, by simple crossing schemes, germline or somatic recombination of transgenes, which could be utilized for numerous genetic manipulations. PhiC31 integrase based methods for site-specific integration of genetic elements was also improved, by developing a plasmid which expresses PhiC31 when injected into early embryos, eliminating the need to use costly and unstable mRNA as is the current standard.Discussion: Here we have expanded the toolbox for synthetic biology in Ae. aegypti. These methods can be easily transferred into other mosquito and even insect species by identifying appropriate promoter sequences. This advances the ability to manipulate these insects for fundamental studies, and for more applied approaches for pest control

    ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble

    Get PDF
    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope and X-ray limits from the X-Ray Telescope on Swift and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope of ASASSN-15lh. It has been classified as a hydrogenpoor superluminous supernova (SLSN I) more luminous than any other supernova observed. ASASSN- 15lh is not detected in the X-rays in individual or coadded observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with a ultraviolet luminosity a hundred times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20 enabling a probe of the earliest star formation. A late rebrightening – most prominent at shorter wavelengths – is seen about two months after the peak brightness, which is itself as bright as a superluminous supernova. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Lyα absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or tidal disruption events

    Effects of ocean sprawl on ecological connectivity: impacts and solutions

    Get PDF
    The growing number of artificial structures in estuarine, coastal and marine environments is causing “ocean sprawl”. Artificial structures do not only modify marine and coastal ecosystems at the sites of their placement, but may also produce larger-scale impacts through their alteration of ecological connectivity - the movement of organisms, materials and energy between habitat units within seascapes. Despite the growing awareness of the capacity of ocean sprawl to influence ecological connectivity, we lack a comprehensive understanding of how artificial structures modify ecological connectivity in near- and off-shore environments, and when and where their effects on connectivity are greatest. We review the mechanisms by which ocean sprawl may modify ecological connectivity, including trophic connectivity associated with the flow of nutrients and resources. We also review demonstrated, inferred and likely ecological impacts of such changes to connectivity, at scales from genes to ecosystems, and potential strategies of management for mitigating these effects. Ocean sprawl may alter connectivity by: (1) creating barriers to the movement of some organisms and resources - by adding physical barriers or by modifying and fragmenting habitats; (2) introducing new structural material that acts as a conduit for the movement of other organisms or resources across the landscape; and (3) altering trophic connectivity. Changes to connectivity may, in turn, influence the genetic structure and size of populations, the distribution of species, and community structure and ecological functioning. Two main approaches to the assessment of ecological connectivity have been taken: (1) measurement of structural connectivity - the configuration of the landscape and habitat patches and their dynamics; and (2) measurement of functional connectivity - the response of organisms or particles to the landscape. Our review reveals the paucity of studies directly addressing the effects of artificial structures on ecological connectivity in the marine environment, particularly at large spatial and temporal scales. With the ongoing development of estuarine and marine environments, there is a pressing need for additional studies that quantify the effects of ocean sprawl on ecological connectivity. Understanding the mechanisms by which structures modify connectivity is essential if marine spatial planning and eco-engineering are to be effectively utilised to minimise impacts

    The CCP4 suite: integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.Jon Agirre is a Royal Society University Research Fellow (UF160039 and URF\R\221006). Mihaela Atanasova is funded by the UK Engineering and Physical Sciences Research Council (EPSRC; EP/R513386/1). Haroldas Bagdonas is funded by The Royal Society (RGF/R1/181006). Jose´ Javier Burgos-Ma´rmol and Daniel J. Rigden are supported by the BBSRC (BB/S007105/1). Robbie P. Joosten is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871037 (iNEXTDiscovery) and by CCP4. This work was supported by the Medical Research Council as part of United Kingdom Research and Innovation, also known as UK Research and Innovation: MRC file reference No. MC_UP_A025_1012 to Garib N. Murshudov, which also funded Keitaro Yamashita, Paul Emsley and Fei Long. Robert A. Nicholls is funded by the BBSRC (BB/S007083/1). Soon Wen Hoh is funded by the BBSRC (BB/T012935/1). Kevin D. Cowtan and Paul S. Bond are funded in part by the BBSRC (BB/S005099/1). John Berrisford and Sameer Velankar thank the European Molecular Biology Laboratory–European Bioinformatics Institute, who supported this work. Andrea Thorn was supported in the development of AUSPEX by the German Federal Ministry of Education and Research (05K19WWA and 05K22GU5) and by Deutsche Forschungsgemeinschaft (TH2135/2-1). Petr Kolenko and Martin Maly´ are funded by the MEYS CR (CZ.02.1.01/0.0/0.0/16_019/0000778). Martin Maly´ is funded by the Czech Academy of Sciences (86652036) and CCP4/STFC (521862101). Anastassis Perrakis acknowledges funding from iNEXT (grant No. 653706), iNEXT-Discovery (grant No. 871037), West-Life (grant No. 675858) and EOSC-Life (grant No. 824087) funded by the Horizon 2020 program of the European Commission. Robbie P. Joosten has been the recipient of a Veni grant (722.011.011) and a Vidi grant (723.013.003) from the Netherlands Organization for Scientific Research (NWO). Maarten L. Hekkelman, Robbie P. Joosten and Anastassis Perrakis thank the Research High Performance Computing facility of the Netherlands Cancer Institute for providing and maintaining computation resources and acknowledge the institutional grant from the Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport. Tarik R. Drevon is funded by the BBSRC (BB/S007040/1). Randy J. Read is supported by a Principal Research Fellowship from the Wellcome Trust (grant 209407/Z/17/Z). Atlanta G. Cook is supported by a Wellcome Trust SRF (200898) and a Wellcome Centre for Cell Biology core grant (203149). Isabel Uso´n acknowledges support from STFC-UK/CCP4: ‘Agreement for the integration of methods into the CCP4 software distribution, ARCIMBOLDO_LOW’ and Spanish MICINN/AEI/FEDER/UE (PID2021-128751NB-I00). Pavol Skubak and Navraj Pannu were funded by the NWO Applied Sciences and Engineering Domain and CCP4 (grant Nos. 13337 and 16219). Bernhard Lohkamp was supported by the Ro¨ntgen A˚ ngstro¨m Cluster (grant 349-2013-597). Nicholas Pearce is currently funded by the SciLifeLab and Wallenberg Data Driven Life Science Program (grant KAW 2020.0239) and has previously been funded by a Veni Fellowship (VI.Veni.192.143) from the Dutch Research Council (NWO), a Long-term EMBO fellowship (ALTF 609-2017) and EPSRC grant EP/G037280/1. David M. Lawson received funding from BBSRC Institute Strategic Programme Grants (BB/P012523/1 and BB/P012574/1). Lucrezia Catapano is the recipient of an STFC/CCP4-funded PhD studentship (Agreement No: 7920 S2 2020 007).Peer reviewe

    Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.

    Get PDF
    OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening

    Improving the efficiency and effectiveness of an industrial SARS-CoV-2 diagnostic facility.

    Get PDF
    On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories

    Eating disorders in weight-related therapy (EDIT): protocol for a systematic review with individual participant data meta-analysis of eating disorder risk in behavioural weight management

    Get PDF
    The Eating Disorders In weight-related Therapy (EDIT) Collaboration brings together data from randomised controlled trials of behavioural weight management interventions to identify individual participant risk factors and intervention strategies that contribute to eating disorder risk. We present a protocol for a systematic review and individual participant data (IPD) meta-analysis which aims to identify participants at risk of developing eating disorders, or related symptoms, during or after weight management interventions conducted in adolescents or adults with overweight or obesity. We systematically searched four databases up to March 2022 and clinical trials registries to May 2022 to identify randomised controlled trials of weight management interventions conducted in adolescents or adults with overweight or obesity that measured eating disorder risk at pre- and post-intervention or follow-up. Authors from eligible trials have been invited to share their deidentified IPD. Two IPD meta-analyses will be conducted. The first IPD meta-analysis aims to examine participant level factors associated with a change in eating disorder scores during and following a weight management intervention. To do this we will examine baseline variables that predict change in eating disorder risk within intervention arms. The second IPD meta-analysis aims to assess whether there are participant level factors that predict whether participation in an intervention is more or less likely than no intervention to lead to a change in eating disorder risk. To do this, we will examine if there are differences in predictors of eating disorder risk between intervention and no-treatment control arms. The primary outcome will be a standardised mean difference in global eating disorder score from baseline to immediately post-intervention and at 6- and 12- months follow-up. Identifying participant level risk factors predicting eating disorder risk will inform screening and monitoring protocols to allow early identification and intervention for those at risk
    corecore