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On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and 
on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative 
laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 
Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, 
GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the 
collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of 
automation, introduction of novel technologies and process modelling to enable a testing capacity 
of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the 
continued exploitation of internal performance metrics, while introducing new technologies including 
the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol 
that removed the requirement for the RNA extraction step. We anticipate that these methods will 
have value in driving continued efficiency and effectiveness within all large scale viral diagnostic 
testing laboratories.

Following the declaration of SARS-CoV-2 as a pandemic by the World Health Organisation on 11th March 20201, 
governments across the world announced unprecedented measures to mitigate the spread of the virus through 
their populations. Alongside the reduction of social contacts and isolation of symptomatic individuals, a key tool 
in the pandemic response was the expansion of diagnostic facilities to detect the spread of the disease and then 
to contain it in an effort to mitigate healthcare infrastructure being overwhelmed—a strategy that has proved 
effective in countries including New Zealand, South Korea, and Iceland, among others2–7. In the UK, the Secretary 
of State for Health announced plans for the creation of a national network of new laboratories (so-called Light-
house Laboratories) that would rapidly scale-up capacity for delivering RT-qPCR analysis of clinical samples8. 
The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 as part of this network, 
through collaboration between AstraZeneca (AZ), GlaxoSmithKline (GSK), and the University of Cambridge.
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The initial challenges of rapidly deploying smaller-scale facilities have been documented by others9–12 how-
ever the scale of testing required at the CCTC necessitated a different way of thinking to ensure capacity and 
throughput could be achieved in a relatively small footprint, whilst ensuring the quality of the process was 
maintained or improved. The CCTC partner groups built on their expertise in automated laboratory screening/
profiling processes to achieve this taking the CCTC from concept to operational testing facility within the Anne 
McLaren Building, Cambridge in just 6 weeks (Supplementary Fig. S1).

The CCTC is unique in many ways to other local and national COVID-19 diagnostic laboratories, as in addi-
tion to processing the normal single swab samples, the centre also evolved a process for pooled patient swab 
samples from the University of Cambridge Asymptomatic Testing Programme for its students13,14 and testing of 
staff samples from the local NHS Trust hospital (Addenbrooke’s Hospital—the largest in the East of England). 
The centre also employed a dedicated technology development team involved in research activities leading to 
pioneering innovations for improving the safety, efficiency, robustness, and portability of the COVID-19 screen-
ing process.

Initial deployment with a focus on rapidly expanding capacity meant that the CCTC adopted the standard 
RT-qPCR process already established in many facilities, but from the outset condensed the PCR reaction into a 
384-well format, thereby reducing the PCR machine requirement by fourfold. Whilst this assay process delivered 
high quality in a robust manner there was still room for continued optimisation in terms of efficiency. As the 
initial volunteer workforce began to return to their home organisations, Charles River Laboratories entered the 
CCTC collaboration in July 2020, providing a large-scale sustainable scientific workforce to continue diagnostic 
testing. All partners worked together thereafter to further develop technologies and iteratively improve perfor-
mance as an analytical facility.

Results
Analysing and improving the operational process through modelling.  Following the establish-
ment of the facility in May 2020, the focus turned to enhancing our efficiency and effectiveness of operation. The 
critical first step in this journey was to establish and agree Key Performance Indicators (KPI) setting a baseline 
against which to measure performance. These KPI focused on four areas:

1.	 Quality In-Process (IP) void rate  ≤ 0.5% of samples voided through process errors in the laboratory
2.	 Capacity The ability to process up to 22,000 samples in a 24-h period
3.	 Turn Around Time (TAT) > 80% of samples having results reported within 24 h of bio-sampling (in response 

to the target set by the UK Prime Minister)7,15.
4.	 Safety No reportable Safety, Health and Environmental incidents of any description.

In comparison to other testing facilities within the Lighthouse Laboratory Network and globally9,10, the 
CCTC had a relatively constrained footprint of separate rooms within an already operational laboratory facil-
ity. With this restricted footprint, process modelling was essential to correctly ascertain the optimal number of 
automated platforms and staffing deployment to deliver the workflow at each station across the facility (Fig. 1), 
first basing the model on best estimates. As the laboratory process matured over the first months of operation, 
the model was refined through the feedback of real-world empirical data, building in more rulesets that served to 
highlight weaknesses in the logic and iteratively improved the predictive power of the model16. The initial CCTC 
laboratory process was able to achieve a capacity of more than 10,000 samples/day. Over the summer months 
in 2020, the CCTC strived to double its daily capacity to 22,000 samples/day. We were however conscious that 

Figure 1.   Standard laboratory process showing the journey of a sample from bio-sampling to result. Purified 
SARS Cov-2 RNA from clinical swab samples is detected by RT-qPCR targeting the ORF1ab gene. Flow diagram 
at the top describes each step; the internal laboratory procedure shown in purple, and the external processes 
in green. The time recorded for each step to occur is highlighted in orange. Definition of the Laboratory 
Information Management System (LIMS) timestamps described in this manuscript are outlined in the white 
boxes.
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simply adding more staff would not be the most efficient solution to the problem of delivering against our four 
KPI. Social distancing, both within the laboratory and the wider site, was crucial to maintain, in addition to the 
understanding that once a certain team size is reached, the addition of further resource can make processes less 
efficient due to sub-optimal communication and reporting17,18.

Our modelling determined that for continuous CCTC operation, the optimal staffing should be as described 
in Table 1a and equipped with 17 class-II Biological Safety Cabinets (BSC), 11 Beckman Coulter Biomek liquid 
handlers (i5/i7), and 9 Roche RT-qPCR Light Cycler®480 II instruments. We initially deployed two nine-hour 
shifts of ~ 40 staff, across all days of the week, however after refining our model based on the changes in sample 
delivery regime to a ‘start/stop’ model, we calculated performance would achieve an average of 17,000 samples/
day with a maximum of 20,000 samples/day. This difference from our target capacity was tightly linked to the 
assumption within our initial modelling that a constant flow of samples would be maintained, providing an end-
less stream of work during operating hours. In reality, this was rarely achieved due to the varying time of sample 
delivery to the lab; for example, Testing Sites would perform a large amount of bio-sampling towards the end 
of each day, and therefore large consignments of samples would be received by the lab at the end of the evening 
shift, leaving no time for them to be fully processed during that working day.

In our focus on efficiency, we exploited our modelling to identify bottlenecks in our laboratory process and 
strategically implement improvements on that process. The introduction of a night shift allowed a 24-h opera-
tion that avoided in-process samples being held overnight, and therefore our process model could be adapted 
back from ‘start/stop’ to ‘continuous’—now predicting a maximum operating capacity of 24,000 samples/day 
(Table 1b).

The modelling continued to highlight a major bottleneck in the process at the RNA extraction step driven 
by the fixed number of liquid-handling robots in the RNA extraction lab. Removing the requirement for RNA 
extraction altogether would both reduce the laboratory footprint and make the process more economical, trans-
ferring the bottleneck to the labour-intensive step of removing secondary packaging within a BSC. A theoretical 
removal of the requirement for BSC containment at the stage of secondary packaging, allowing this to occur on 
the open bench, was predicted to expand our capacity to an average of 29,000 samples/day. Intrinsically linked 
to capacity the theoretical TAT of a sample was calculated as: 3 h 50 min–5 h 10 min. However empirical data on 
timings gathered through the initial phase of the CCTC operation showed that our mean end-to-end laboratory 
processing time was in fact 8 h 35 min.

To address both the capacity and TAT bottlenecks, our technology development focussed towards two key 
innovations:

1.	 The removal of RNA extraction (so called Direct to PCR; D2PCR) to create a more economical and efficient 
process whilst reducing the laboratory footprint.

2.	 Heat Inactivation of viable samples upon receipt prior to entry into the laboratory environment to circumvent 
the requirement of BSC containment at the point of secondary packaging removal19.

We describe the validation of Heat Inactivation of viral samples at scale, within a separate manuscript cur-
rently under preparation, and it is not discussed further here.

Decreasing turnaround time though assay modification.  Alongside the introduction of Heat 
Inactivation, we also explored experimentally the scope for a Direct to PCR assay (D2PCR) that removed the 
requirement for RNA extraction shown through our modelling to be a capacity and rate-limiting step due to the 
physical laboratory space available to accommodate the required liquid-handling robotic platforms and the long 
run-time of the protocol (70–115 min).

Table 1.   Staffing and capacity modelling. (a) Optimal staffing numbers as defined by the process modelling 
described. (b) Capacity process modelling predictions—assuming a continuous process aligned to staffing 
numbers shown in (a); predicted process bottlenecks are highlighted. SP Sample Preparation Team, RNA RNA 
Extraction Team, PCR RT-qPCR Team, Unbagging in containment removal of sample secondary containment 
within a BSC.

(a) Optimal staffing numbers

Station Morning Evening Night

SP 30 30 5

RNA 4 4 2

PCR 5 5 2

(b) Capacity process modelling

Model includes CapacityIthousands

RNA extraction Unbagging in containment Average Maximum Bottleneck

Yes Yes 21 24 RNA

No Yes 23 24 Unbagging in containment

No No 29 30 PCR
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The RNA extraction step of the COVID-19 testing workflow achieves two purposes: first the Guanidinium 
Isothiocyanate (GITC) content of the RNA extraction lysis buffer serves to inactivate potentially viable virus. 
At the time of establishing the CCTC, GITC-mediated virus inactivation was the most well understood, and 
therefore the preferred method20,21. Second, RNA extraction purifies and concentrates viral RNA in advance of 
RT-qPCR detection. However, advances in RT-qPCR reagents lead to the possibility of performing RT-qPCR 
directly on crude samples, and when coupled with heat inactivation, the very real possibility of removing any 
RNA extraction step completely. In our workflow, the omission of RNA extraction was calculated to reduce 
the laboratory TAT on samples by 2 h, whilst simultaneously increasing overall capacity of the laboratory by 
repurposing staff and facilities into sample receipt and preparation. This D2PCR approach has other significant 
advantages, in particular a reduction in the use of laboratory consumables, including a 50% reduction in the 
number of pipette tips, further reducing the cost of the assay, reducing waste and at a point when the global 
supply-chain for reagents, labware, and equipment could not keep up with demand, facilitating centre opera-
tion. Further to this, RNA extraction methods use large amounts of solvents that require bespoke storage and 
disposal. Use of D2PCR for detection of COVID-19 has been previously demonstrated22–24. Herein we present 
a clinically approved high-throughput methodology, developed using the Genesig® Real Time PCR COVID-19 
High Throughput HT-CE kit V2.0 targeting the same ORF1ab region of SARS-Cov-2 and containing an optimised 
buffer formulation which overcomes sample-mediated PCR inhibition.

Validation of the D2PCR process for clinical testing was carried out as described in the methods, comparing 
the D2PCR method directly with the standard RNA extraction-based protocol. All samples with a positive result 
in the standard assay, with a Cq value of 33 or lower, tested positive using the D2PCR assay (Fig. 2a,b) with a 
concordance rate of 100%. For weaker positive samples with Cq values of between 33 and 36, the concordance 
rate was 52.6%, while very weak positives (Cq > 36 in standard assay) were mostly not detected (6.25% positive 
to positive detection rate) (Fig. 2b). This shift in the limit of detection was expected based on the D2PCR using 
fourfold less RNA input than the standard assay (due to the lack of concentration effect from RNA extraction), 
as well as some likely impact of interference on PCR efficiency from the crude sample matrix. The significance 
of individuals with high Cq positive results within wider public health response is a matter of current debate, 
however it is likely that this is reflective of low-level viral RNA relating to individuals early or late in their course 
of infection, even when they are no longer infectious to others25. Data were reviewed by our Clinical Lead and 
wider Public Health England boards, where it was agreed that the reduced sensitivity at extremely low viral-load 
levels was acceptable and the D2PCR methodology was formally approved for clinical sample testing.

Beyond the benefits of cost, reagents, footprint, and waste reduction we assessed the effect that the D2PCR 
method would have on TAT in our operational laboratory. When we examined the laboratory TAT in this pilot 
study, we found the samples had a median time to completion of 3 h 32 min. When compared against all other 
samples processed in the same month (March 2021) using the standard laboratory process, we found this repre-
sented a median time saving of 1 h 52 min (Fig. 2c). As mentioned above, we have also developed and deployed 
a method for heat inactivation of samples before they enter the lab. The combination of D2PCR with heat inac-
tivation led to a further median in lab time saving of 33 min (Fig. 2d).

Exploiting operational data using an informatics‑based approach.  Across the Lighthouse Labo-
ratory Network, the end-to-end laboratory process was supported by a Laboratory Information Management 
System (LIMS) that provided the backbone of data management within the labs. A LIMS is fundamental to 
management of data flow within a testing laboratory such as the CCTC dealing with several thousand samples 
per day—mapping the lifecycle of individual patient samples as they progress through the physical laboratory 
process. As patient samples undergo transformation and compression from individual vials to multiwell microti-
tre plates, onwards through plate-plate transfers, the LIMS records that lineage and captures various timestamps 
throughout the process (Fig. 1). These timestamps are not only imperative to the detailed tracking of individual 
samples based on an anonymised barcode, but also provide a rich data set with which to view performance of the 
process in a real-time fashion. However due to the nature of the LIMS environment and requirement to ensure 
change-control was centralised across the lab network, the ability to be agile with development of aligned local 
IT tools to exploit the data was crucial.

The combination of a core Customisable Off The Shelf product aligned with associated tools developed in 
an agile methodology to bring immediate benefit in exploitation of operational data is well proven to deliver 
results quickly26. To this end we targeted two user bases who we thought would be best placed to interact with 
these data—delivering tools appropriate for each (Supplementary Fig. S2). Firstly, we provided the laboratory 
management team with data regarding past performance to examine areas for improvement (Centre Performance 
Overview tool & Shift Lead dashboard; Supplementary Figs. S3, S4). Secondly, we provided the scientists in the 
laboratory with dashboards to enable real-time feedback on performance against key performance indicators 
(Supplementary Fig. S5).

Visualization of retrospective and real‑time operational data.  The Centre Performance Overview 
tool provides a retrospective view of the laboratory TAT, broken down by station and time of day, with multiple 
interactive methods of viewing the data. Visualisation of where and when samples were being delayed focussed 
our attention, enabling adoption of working practices aimed at reducing any bottleneck. Key process inefficien-
cies were quickly identified at the handovers between stations and shifts, which could be addressed through 
process change without requiring significant modification to the SOPs for the individual workstations. Visualis-
ing TAT data in this fashion also highlighted the importance of maintaining staff levels at defined minimum 
numbers in certain teams to avoid new process bottlenecks arising—ensuring that the CCTC management team 
could work with operational Shift Leads to rebalance resource appropriately. Viewing the flow of data through 
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the centre in this holistic fashion also enabled informed discussion with the upstream Department of Health & 
Social Care (DHSC) logistics teams around optimal sample delivery schedules to achieve the best TAT.

To complement the retrospective executive view, it was crucial to provide real-time, non-interactive dash-
boards, providing quantitative feedback to the teams on each shift regarding their performance in real-time. 
This approach has previously been documented for the receipt of samples and result reporting at an in-house 
hospital diagnostic facility, with operational improvements made considering this visualisation of data, but our 
efforts concentrated on the laboratory process27. Information was broken down for each station in three streams 
(Supplementary Figs. S4, S5):

1.	 The incoming workload from the previous station to prepare reagents and equipment.
2.	 A real-time view of the workload at the station, where plates experiencing a delay beyond expected process 

time are highlighted in red.
3.	 A 24-h analysis of the day’s performance, allowing instant feedback.

The visualisation of current workflow was particularly important in stations containing automated platforms, 
where dashboards were configured to highlight automation end-times so that plates/data could be expedited to 

Figure 2.   Direct to PCR (D2PCR) concordance data. (a) Cq values for samples tested as positive in both 
D2PCR and standard assay, showing typical increase of 2–4 Cq units with D2PCR. (b) Concordance of test 
results. Samples which tested positive in either the standard assay or the D2PCR assay binned depending on the 
standard assay Cq. Graph indicates the number of samples tested and the concordance by Cq bin. (c) Lab TAT 
for standard assay (including RNA extraction) compared to D2PCR. For standard test all test results generated 
within March 2021 are shown, for D2PCR all data from a trial run over 3 days is shown. P value calculated using 
Wilcox test. (d) Lab TAT for D2PCR, comparing Heat Inactivation during the lab process (via thermal cycler) 
with Heat Inactivation prior to lab entry. P value calculated using Wilcox test. Figure prepared using R with 
ggplot2 v 3.3.2 [CRAN—Package ggplot2 (r-project.org)].
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the next step. These tools were specifically designed to ensure completed plates were swiftly moved to the next 
stage, striving towards a steady flow through the lab.

To investigate any effect on TAT through use of these data management tools, we monitored the time a sample 
plate spent within Sample Preparation before and after implementation. Here we observed a notable decrease in 
the time a sample spent at this stage within a few days of the introduction (Fig. 3) and an overall significant reduc-
tion was observed across the time points studied with a median reduction of 8.46 min (10.6% improvement). 
In particular, the number of plates spending over three hours in Sample Preparation were substantially reduced 
through introduction of this tool, indicating that staff are not necessarily working at a higher speed, but rather 
that delayed plates are being identified and expedited, thus reducing the variance in time spent at this station.

Reviewing CCTC performance.  To review performance of the CCTC against our established KPI, we 
plotted the seven-day rolling mean of the process timing data collected to quantify our progress (Fig. 4). The 
laboratory TAT understandably had a direct relation to the number of samples processed, however, after imple-
menting the strategies described in our paper (minus D2PCR) the CCTC sustained a high workload with peaks 
in both January 2021 and March 2021 without an aligned detrimental effect on TAT. Indeed, our mean TAT 
for March–April 2021 was below 6 h, in line with the theoretical time for the process of 3 h 50 min–5 h 10 min 
(Fig. 1). This focus on exploitation of our operational data to continually drive efficiency of process has led to the 
CCTC consistently achieving its KPI of > 80% of samples processed within 24 h (achieved on > 73% of days in 
2021). Heat Inactivation upon receipt was formally adopted into the CCTC process in early February 2021 and 
quickly showed positive impact by helping to smooth the flow of samples from receipt into the lab – along with 
the other advantages described earlier.

Whilst our efforts in reducing laboratory TAT had an observable impact, this would be counter-productive 
if these improvements were detrimental to quality. The seven-day rolling mean of the centre’s In-Process (IP) 
voids is plotted in Fig. 4c and shows that there has been no increase in IP voids throughout our drive towards 
efficiency and effectiveness of process (the average rate remaining below our target KPI at 0.45%).

Discussion
A comprehensive clinical testing infrastructure is a critical component in combatting disease outbreaks. At the 
CCTC we deployed a functional industrial scale diagnostics facility and have continued to strive for improved 
efficiency and effectiveness of our process, to ensure that the centre delivered its objectives to as high a standard 
as possible.

In the establishment and continued management of any process in an efficient manner, it is important to 
ensure that the baseline for establishing what ‘good’ looks like is agreed by all stakeholders. Of equal importance 

Figure 3.   Using informatics dashboards to improve process efficiency in Sample Preparation. (a) Each point 
represents a single microplate where the x axis describes creation time within LIMS and y axis the total time 
spent within the Sample Preparation step. Grey points are before the introduction of the in-lab dashboard; Black 
points are post introduction. Blue line is a regression calculated using a generalized additive model with the SE 
shown. (b) Box plot of data from (a). P value from Wilcox test. Figure prepared using R with ggplot2 v 3.3.2 
[CRAN—Package ggplot2 (r-project.org)].
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is that all those delivering the process understand these baseline metrics and how their own efforts can impact 
them (both positively and negatively). Our efforts in progression of the CCTC from initial establishment to fully 
optimised operation has been underpinned by our ability to use internal process metrics to highlight bottlenecks 
and improve consistency of flow through our end-to-end process. From point of sample receipt into the CCTC 
we are able to track progress of samples through each of the different ‘stations’ (Fig. 1) and display that progress 
in almost real-time through use of our comprehensive suite of dashboards (Supplementary Figs. S4, S5). These 
data drawn from several underlying sources were computationally wrangled into a consistent set of data objects 
which could then be displayed to various consumers of that data, ensuring that display was tailored to their 
needs. Through regular management review of operational performance data and translation of that data into 
operational improvements through management on the ground, the CCTC was able to exploit those data in near 
real-time to enable the CCTC to meet all our KPI and further drive efficiency of our processes.

In this report we have documented the informatics tools that we have used to attain our objectives on TAT 
and quality, whilst capacity modelling, heat inactivation upon receipt, and D2PCR have exemplified our efforts 
to reduce the footprint, increase the safety of our process, lower our dependence on multiple supply chains, and 
reduce the burden of labour-intensive steps, making a more effective and economical diagnostics facility. In 
addition to the optimisation noted above we further optimised the assay set up and quality control as detailed 
in the Supplemental Information including changes in assay volume, instrument performance tracking and data 

In
 P

ro
ce

ss
 V

oi
ds

(%
, 7

 d
ay

 ro
llin

g 
m

ea
n)

In
 la

b 
tu

rn
 a

ro
un

d 
tim

e
(h

, 7
 d

ay
 ro

llin
g 

m
ea

n)
Sa

m
pl

es
 p

ro
ce

ss
ed

(7
 d

ay
 ro

llin
g)

Figure 4.   Lab TAT, samples processed, and quality control of the CCTC from October 2020–March 2021. (a) 
7-day rolling mean of the lab TAT. (b) 7-day rolling mean of the total daily sample number processed. (c) 7-day 
rolling mean of the in-process voids within the lab. Figure prepared using R with ggplot2 v 3.3.2 [CRAN—
Package ggplot2 (r-project.org)].
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integrity. This has resulted in what we believe is the optimised process that future pathogen screening laboratories 
can follow (Fig. 5).

In the first year of operation the CCTC processed 3,264,596 clinical samples. Over this time, continuous 
process monitoring has been applied to highlight areas of focus for technology advancement including heat 
inactivation and D2PCR, with the impact of those advancements being observed in real-time In situations 
such as emerging pandemic threats, the speed at which a highly efficient response can be implemented is key to 
minimising impact to human health and society. Adoption of the processes and improvements described here, 
as learned through the COVID-19 pandemic, will enhance efficiency of process and effectiveness of delivery for 
future clinical diagnostics facilities.

Methods
Ethics statement.  This study was conducted as part of the Lighthouse Laboratories surveillance for 
COVID-19 infections set up under the auspices of Section 251 of the National Health Service Act 2006 and/or 
Regulation 3 of The Health Service (Control of Patient Information) Regulations 2002. The study therefore did 
not require individual patient consent or ethical approval. No Patient Identifiable information (PII) was received 
by the Centre. Authors only had access to anonymised data in the form of sample barcodes. Approval for the 
operation of the CCTC and improvements to the procedures used therein was granted by the Department for 
Health and Social Care under the emergency provisions granted by the Secretary of State under Section 251 of 
the National Health Service Act.

Capacity modelling.  A stochastic simulation of the sample preparation and screening processing steps was 
developed by Dr Michael Allen (University of Exeter Medical School) using the SymPy library associated with 
the Python development environment16. The simulation was developed to consider the processing times at each 
step with associated human and equipment resources. Variation in time for either human or equipment related 
processing was applied using a triangular distribution. Workforce break times, shift routines and estimates for 
equipment breaking down were incorporated into the model. Simulations were run over 30 iterations and the 
results aggregated to provide an output for capacity, test-sample queuing, and resource utilisation at each step 
and for the overall process. The simulation data was used to identify potential processing bottlenecks so that 
solutions could be explored by adjust the screening process and/or applied human and equipment resources.

SARS‑Cov‑2 RT‑qPCR diagnostic assay.  Methodology for the standard SARS Cov-2 diagnostic test 
used at the CCTC is described in detail in the Supplementary Information, where we have presented the Stand-
ard Operating Procedures in abridged form, focusing on transferable aspects and removing any CCTC-specifics 
that would be irrelevant to other laboratories. In brief, clinical oropharyngeal/nasopharyngeal (OP/NP) samples 
were received at the CCTC in leakproof UN3373 packaging containing a screw capped sample tube with a swab 
stick immersed in viral transport medium (VTM). OP/NP sab vials were unpacked and racked within a micro-
biological safety cabinet and following Containment Level 2 precautions. For each sample, 200 µl of VTM was 

Figure 5.   Evolution of the CCTC laboratory process. Evolution from initial standard process to fully optimised 
(incorporating both Heat Inactivation upon receipt and D2PCR format). Key changes from the initial process 
are shown in grey boxes—including physical laboratory steps along with alignment of data QC tools and 
continuous Operational informatics analysis.
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transferred to a 96 deep well sample plate, followed by the addition of RNA extraction lysis buffer, Proteinase K 
and Internal Extraction Control (IEC) RNA. The sample plate was sealed and double contained, and placed at 
65 °C for 10 min for heat inactivation of viable SARS-Cov-2, followed by incubation at room temperature for 
10 min. RNA was extracted using the RNAdvance Viral Kit (C63510) on Biomek i5 or i7 automated platforms 
from Beckman Coulter. Viral RNA was eluted in nuclease-free water and then used for RT-qPCR using the Gen-
esig Real-Time COVID-19 PCR High Throughput assay kit (Primer Design Ltd, Geneisg Z-Path-COVID-19-CE 
HT1.0) as described by the manufacturer except that 10 µl (i.e. half) reaction volumes were used. RT-PCR reac-
tions were prepared in white, 384-well LightCycler 480 Multiwell Plates (Roche #04729749001), 6 µl RT-qPCR 
master mix was added using a ThermoFisher Multidrop Combi and 4 μl extracted RNA sample was added using 
an Agilent Bravo. RT-qPCR reactions were run on a Light Cycler 480 II and data was analysed using a bespoke 
algorithm (FastFinder software, UgenTec) to define Cq values and assign test results following interpretation of 
controls (positive, negative, IEC) and according to a defined decision tree.

Direct to PCR (D2PCR) validation.  In the D2PCR assay, the standard process described previously is 
shortened by omission of the initial sample lysis and RNA extraction steps. Instead, 100 μl of each OP/NP swab 
sample was transferred to a Hard-Shell Low-Profile Skirted 96-Well PCR Plate (Biorad #HSP9601), sealed with an 
Aluminium Foil Seal (Beckman Coulter #538619) and heated in a PCR Max AlphaCycler, set to 65 °C for 20 min. 
Heat inactivation could also be performed at the stage of sample receipt, which has the advantage of allowing 
subsequent steps to be performed without Containment Level 2 working, or by another suitable method that 
achieves the required heat exposure for viral inactivation prior to PCR set-up outside of biological containment. 
All equipment used for heat inactivation should be suitably calibrated to verify the required heating of samples28. 
RT-PCR reactions were prepared in White, 384-well LightCycler 480 Multiwell Plates (Roche #04729749001) by 
sequential addition of 3.5 μl of Genesig Real Time PCR COVID-19 High Throughput HT-CE kit V2.0 (Genesig 
#Z-Path-COVID-19-CE) PCR master mix using a ThermoFisher Multidrop Combi, followed by 2.5 μl of a 50-fold 
dilution of IEC in nuclease-free water using an Agilent Bravo (omitting positive and negative control wells where 
IEC was not included). The RT-qPCR assay was initiated through addition of 4 μl heat inactivated sample to the 
384-well microplate containing PCR master mix and IEC using an Agilent Bravo, and loading of the 384-well 
microplate into a Roche LightCycler 480 II.

Initial D2PCR experiments were performed using OP/NP swab samples with known SARS-CoV-2 status 
(samples already tested using the approved CCTC standard laboratory process) to determine suitable conditions 
for heat inactivation of potential viable SARS-Cov-2 and RT-qPCR set-up. In the absence of an RNA extraction 
step, the IEC was included to confirm successful RT-PCR in every sample (therefore highlighting any unexpected 
sample-mediated reaction inhibition). IEC was added to PCR master mix in 384-well microplates to avoid weak 
or variable IEC signals that are seen when IEC is added to samples themselves, likely a result of RNA degradation.

Validation of the D2PCR methodology for clinical testing was carried out by testing of 1100 OP/NP swab 
samples in parallel to the standard RNA extraction-based methodology, testing over three separate days (Fig. 2).

Operational informatics.  To enable rapid development, we based our solution around an RStudio connect 
server deployed on a virtual machine connected to a data lake containing output from our LIMS. Architecture 
of the system was set up as shown in Supplementary Fig. S2.

Automated queries generated reports from the LIMS containing all active and recently completed (archived) 
plates on a 15–30 min cycle. These reports were output in CSV format and deposited into an Azure file share, 
forming the basis of our data lake.

The Azure file share was mapped to a virtual machine running RStudio connect. A series of scheduled R 
markdown scripts regularly imported the CSV reports, calculated required statistics, and appended the new data 
to existing RDS files which contained all the processed data required.

Data was visualised and exploited via several applications coded in Shiny (an RStudio package) which read 
the RDS files and provided web-based visualisations (Supplementary Figs. S3, S4, S5).
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