65 research outputs found
Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.
Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.We thank Kaori Yoshida, Keiko Uchiyama, Satomi Kawai, Naomi Hatanaka, Yoko Sawaguchi, Runa Washio,
Takako Ichihashi, Nanako Koike, Keiko Uchiyama, Masaaki Nameta (Niigata University), Kaori Igarashi, Kaori
Saitoh, Keiko Endo, Hiroko Maki, Ayano Ueno, Maki Ohishi, Sanae Yamanaka, Noriko Kagata (Keio University)
for their excellent technical assistance, C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School)
for providing the BAT cell line, Evan Rosen (Harvard Medical School) for providing us Ucp-Cre mice, Kosuke
Morikawa (Kyoto University), Tomitake Tsukihara (University of Hyogo) and Shinya Yoshikawa (University of
Hyogo) for their professional opinions and suggestions. Tis work was supported by a Grant-in-Aid for Scientifc Research (A) (20H00533) from MEXT, AMED under Grant Numbers JP20ek0210114, and AMED-CREST
under Grant Number JP20gm1110012, and Moonshot Research and Development Program (21zf0127003s0201),
MEXT Supported Program for the Strategic Research Foundation at Private Universities Japan, Private University
Research Branding Project, and Leading Initiative for Excellent Young Researchers, and grants from the Takeda
Medical Research Foundation, the Vehicle Racing Commemorative Foundation, Ono Medical Research Foundation, and the Suzuken Memorial Foundation (to T.M.). Support was also provided by a Grants-in-Aid for Young
Scientists (Start-up) (26893080), and grants from the Uehara Memorial Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, SENSHIN Medical Research Foundation, ONO Medical Research
Foundation, Tsukada Grant for Niigata University Medical Research, Te Nakajima Foundation, SUZUKEN
memorial foundation, HOKUTO Corporation, Mochida Memorial Foundation for Medical & Pharmaceutical
Research, Grants-in-Aid for Encouragement of Young Scientists (A) (16H06244), Daiichi Sankyo Foundation of
Life Science, AMED Project for Elucidating and Controlling Mechanisms of Aging and Longevity under Grant
Number JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002, JP21gm5010002, Astellas Foundation for Research on Metabolic Disorders, Research grant from Naito Foundation, Te Japan Geriatrics Society
(to I.S.); by a Grant-in-Aid for Scientifc Research (C) (19K08974), Yujin Memorial Grant, Sakakibara Memorial
Research Grant from Te Japan Research Promotion Society for Cardiovascular Diseases, TERUMO Life Science Foundation, Kanae Foundation (to Y.Y.), JST ERATO (JPMJER1902), AMED-CREST (JP20gm1010009),
the Takeda Science Foundation, the Food Science Institute Foundation (to S.F.), and by a grant from Bourbon
(to T.M., I.S. and Y.Y.).S
cDNA Immunization of Mice with Human Thyroglobulin Generates Both Humoral and T Cell Responses: A Novel Model of Thyroid Autoimmunity
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
A Comparative Structural Characterization of the Human NSCL-1 and NSCL-2 Genes
Human cDNA clones for NSCL-1 and NSCL-2, two basic domain helix-loop-helix (bHLH) genes expressed predominantly in the developing nervous system, were obtained from a fetal brain cDNA library. The full- length transcripts and the genomic structures were determined. The cDNAs for the two genes encode predicted proteins of similar size (133 and 135 amino acids for NSCL- 1 and NSCL-2, respectively) and structure. The carboxyl-terminal 75 amino acids of the two proteins contain the bHLH motif and differ from each other by only three conservative amino acid changes, while the amino-terminal portions are markedly divergent from each other. In addition to the similar protein structure, the genes have a similar genomic organization, suggesting a close evolutionary relationship. The5’-regulatory regions of the two genes share some features(ie. potential TATA, CCAAT, and GATA binding sites) but also differ significantly in their G+C content. NSCL-1 is relatively G+C-rich (63%)in the sequences upstream of transcription initiation and has multiple potential binding sites for transcription factors that bind to G+C-rich sequences (e.g. AP-2). NSCL-2 is relatively A+T-rich (63%) in this region and has a potential binding site for AP1. Studies of expression in normal tissues demonstrated expression of NSCL-1 and NSCL-2 in the developing central and peripheral nervous system, most likely in developing neurons. Additional Northern analysis studies in cell lines revealed expression of these genes in some cell lines derived from tumors with neural or neuroendocrine features such as neuroblastoma, PNET, and small cell lung cancer. NSCL-1 is expressed in a larger number of these cell lines. The differences in expression may parallel differences in develop-mental regulation
A Comparative Structural Characterization of the Human NSCL-1 and NSCL-2 Genes
Human cDNA clones for NSCL-1 and NSCL-2, two basic domain helix-loop-helix (bHLH) genes expressed predominantly in the developing nervous system, were obtained from a fetal brain cDNA library. The full- length transcripts and the genomic structures were determined. The cDNAs for the two genes encode predicted proteins of similar size (133 and 135 amino acids for NSCL- 1 and NSCL-2, respectively) and structure. The carboxyl-terminal 75 amino acids of the two proteins contain the bHLH motif and differ from each other by only three conservative amino acid changes, while the amino-terminal portions are markedly divergent from each other. In addition to the similar protein structure, the genes have a similar genomic organization, suggesting a close evolutionary relationship. The5’-regulatory regions of the two genes share some features(ie. potential TATA, CCAAT, and GATA binding sites) but also differ significantly in their G+C content. NSCL-1 is relatively G+C-rich (63%)in the sequences upstream of transcription initiation and has multiple potential binding sites for transcription factors that bind to G+C-rich sequences (e.g. AP-2). NSCL-2 is relatively A+T-rich (63%) in this region and has a potential binding site for AP1. Studies of expression in normal tissues demonstrated expression of NSCL-1 and NSCL-2 in the developing central and peripheral nervous system, most likely in developing neurons. Additional Northern analysis studies in cell lines revealed expression of these genes in some cell lines derived from tumors with neural or neuroendocrine features such as neuroblastoma, PNET, and small cell lung cancer. NSCL-1 is expressed in a larger number of these cell lines. The differences in expression may parallel differences in develop-mental regulation
- …