785 research outputs found

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    The locus of legitimate interpretation in Big Data sciences : Lessons for computational social science from -omic biology and high-energy physics

    Get PDF
    This paper argues that analyses of the ways in which Big Data has been enacted in other academic disciplines can provide us with concepts that will help understand the application of Big Data to social questions. We use examples drawn from our Science and Technology Studies (STS) analyses of -omic biology and high energy physics to demonstrate the utility of three theoretical concepts: (i) primary and secondary inscriptions, (ii) crafted and found data, and (iii) the locus of legitimate interpretation. These help us to show how the histories, organisational forms, and power dynamics of a field lead to different enactments of big data. The paper suggests that these concepts can be used to help us to understand the ways in which Big Data is being enacted in the domain of the social sciences, and to outline in general terms the ways in which this enactment might be different to that which we have observed in the ‘hard’ sciences. We contend that the locus of legitimate interpretation of Big Data biology and physics is tightly delineated, found within the disciplinary institutions and cultures of these disciplines. We suggest that when using Big Data to make knowledge claims about ‘the social’ the locus of legitimate interpretation is more diffuse, with knowledge claims that are treated as being credible made from other disciplines, or even by those outside academia entirely

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Climate change and the long-term viability of the World’s busiest heavy haul ice road

    Get PDF
    Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world’s busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR

    Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Get PDF
    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3–8.4, whereas COD reduced by 50–65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40−50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation

    Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the metabolic changes in urinary steroids in pre- and post-menopausal women and men with papillary thyroid carcinoma (PTC).</p> <p>Methods</p> <p>Quantitative steroid profiling combined with gas chromatography-mass spectrometry was used to measure the urinary concentrations of 84 steroids in both pre- (n = 21, age: 36.95 ± 7.19 yr) and post-menopausal female (n = 19, age: 52.79 ± 7.66 yr), and male (n = 16, age: 41.88 ± 8.48 yr) patients with PTC. After comparing the quantitative data of the patients with their corresponding controls (pre-menopause women: n = 24, age: 33.21 ± 10.48 yr, post-menopause women: n = 16, age: 49.67 ± 8.94 yr, male: n = 20, age: 42.75 ± 4.22 yr), the levels of steroids in the patients were normalized to the mean concentration of the controls to exclude gender and menopausal variations.</p> <p>Results</p> <p>Many urinary steroids were up-regulated in all PTC patients compared to the controls. Among them, the levels of three active androgens, androstenedione, androstenediol and 16α-hydroxy DHEA, were significantly higher in the pre-menopausal women and men with PTC. The corticoid levels were increased slightly in the PTC men, while progestins were not altered in the post-menopausal PTC women. Estrogens were up-regulated in all PTC patients but 2-hydroxyestrone and 2-hydroxy-17β-estradiol were remarkably changed in both pre-menopausal women and men with PTC. For both menopausal and gender differences, the 2-hydroxylation, 4-hydroxylation, 2-methoxylation, and 4-methoxylation of estrogens and 16α-hydroxylation of DHEA were differentiated between pre- and post-menopausal PTC women (<it>P </it>< 0.001). In particular, the metabolic ratio of 2-hydroxyestrone to 2-hydroxy-17β-estradiol, which could reveal the enzyme activity of 17β-hydroxysteroid dehydrogenase, showed gender differences in PTC patients (<it>P </it>< 1 × 10<sup>-7</sup>).</p> <p>Conclusions</p> <p>These results are expected be helpful for better understanding the pathogenic differences in PTC according to gender and menopausal conditions.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation.</p> <p>Methods</p> <p>Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge.</p> <p>Results</p> <p>Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration.</p> <p>Conclusion</p> <p>Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.</p
    corecore