11 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Racial differences in the relationship between clinical prostatitis, presence of inflammation in benign prostate and subsequent risk of prostate cancer

    No full text
    BACKGROUND: Epidemiologic studies, primarily done in white men, suggest that a history of clinically-diagnosed prostatitis increases prostate cancer risk, but that histological prostate inflammation decreases risk. The relationship between a clinical history of prostatitis and histologic inflammation in terms of how these two manifestations of prostatic inflammation jointly contribute to prostate cancer risk and whether racial differences exist in this relationship is uncertain. METHODS: Using a nested design within a cohort of men with benign prostate tissue specimens, we analyzed the data on both clinically-diagnosed prostatitis (NIH categories I–III) and histological inflammation in 574 prostate cancer case-control pairs (345 white, 229 African American). RESULTS: Clinical prostatitis was not associated with increased prostate cancer risk in the full sample, but showed a suggestive inverse association with prostate cancer in African Americans (odds ratio (OR) = 0.47; 95% confidence interval (CI) = 0.27–0.81). In whites, clinical prostatitis increased risk by 40%, but was only associated with a significant increased prostate cancer risk in the absence of evidence of histological inflammation (OR = 3.56; 95% CI = 1.15–10.99). Moreover, PSA velocity (P = 0.008) and frequency of PSA testing (P = 0.003) were significant modifiers of risk. Clinical prostatitis increased risk of prostate cancer almost three-fold (OR = 2.97; 95% CI = 1.40–6.30) in white men with low PSA velocity and about twofold in white men with more frequent PSA testing (OR = 1.91; 95% CI = 1.09–3.35). CONCLUSIONS: In our cohort of men with benign prostate specimens, race, and histological inflammation were important cofactors in the relationship between clinical prostatitis and prostate cancer. Clinical prostatitis was associated with a slightly decreased risk for prostate cancer in African American men. In white men, the relationship between clinical prostatitis and prostate cancer risk was modified by histological prostatic inflammation, PSA velocity, and frequency of PSA testing—suggesting a complex interplay between these indications of prostatic inflammation and prostate cancer detection

    Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer

    No full text
    PURPOSE: We previously reported an inverse association between flavonoid intake and breast cancer incidence, which has been confirmed by others; but no studies have considered simultaneously potential interactions of flavonoids with multiple genetic polymorphisms involved in biologically-relevant pathways (oxidative stress, carcinogen metabolism, DNA repair, and one-carbon metabolism). METHODS: To estimate interaction effects between flavonoids and 13 polymorphisms in these four pathways on breast cancer risk, we used population-based data (N = 875 cases and 903 controls) and several statistical approaches, including conventional logistic regression and semi-Bayesian hierarchical modeling (incorporating prior information on the possible biological functions of genes), which also provides biologic pathway-specific effect estimates. RESULTS: Compared to the standard multivariate model, the results from the hierarchical model indicate that gene-by-flavonoid interaction estimates are attenuated, but more precise. In the hierarchical model, the average effect of the deleterious versus beneficial gene, controlling for average flavonoid intake in the DNA repair pathway, and adjusted for the three other biologically-relevant pathways (oxidative stress, carcinogen metabolism, and one-carbon metabolism), resulted in a 27% increase risk for breast cancer [Odds Ratio (OR) = 1.27; 95% Confidence Interval (CI) = 0.70, 2.29]. However, the CI was wide. CONCLUSIONS: Based on results from the semi-Bayesian model, breast cancer risk may be influenced jointly by flavonoid intake and genes involved in DNA repair, but our findings require confirmation
    corecore