465 research outputs found

    Static non-reciprocity in mechanical metamaterials

    Full text link
    Reciprocity is a fundamental principle governing various physical systems, which ensures that the transfer function between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity have been mostly considered in dynamic systems, for electromagnetic, acoustic and mechanical wave propagation associated with spatio-temporal variations. Here we show that it is possible to strongly break reciprocity in static systems, realizing mechanical metamaterials that, by combining large nonlinearities with suitable geometrical asymmetries, and possibly topological features, exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. In addition to extending non-reciprocity and isolation to statics, our work sheds new light on the understanding of energy propagation in non-linear materials with asymmetric crystalline structures and topological properties, opening avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5 figures

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide

    Treatment of hepatic encephalopathy by on-line hemodiafiltration: a case series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is thought that a good survival rate of patients with acute liver failure can be achieved by establishing an artificial liver support system that reliably compensates liver function until the liver regenerates or a patient undergoes transplantation. We introduced a new artificial liver support system, on-line hemodiafiltration, in patients with acute liver failure.</p> <p>Methods</p> <p>This case series study was conducted from May 2001 to October 2008 at the medical intensive care unit of a tertiary care academic medical center. Seventeen consecutive patients who admitted to our hospital presenting with acute liver failure were treated with artificial liver support including daily on-line hemodiafiltration and plasma exchange.</p> <p>Results</p> <p>After 4.9 ± 0.7 (mean ± SD) on-line hemodiafiltration sessions, 16 of 17 (94.1%) patients completely recovered from hepatic encephalopathy and maintained consciousness for 16.4 ± 3.4 (7-55) days until discontinuation of artificial liver support (a total of 14.4 ± 2.6 [6-47] on-line hemodiafiltration sessions). Significant correlation was observed between the degree of encephalopathy and number of sessions of on-line HDF required for recovery of consciousness. Of the 16 patients who recovered consciousness, 7 fully recovered and returned to society with no cognitive sequelae, 3 died of complications of acute liver failure except brain edema, and the remaining 6 were candidates for liver transplantation; 2 of them received living-related liver transplantation but 4 died without transplantation after discontinuation of therapy.</p> <p>Conclusions</p> <p>On-line hemodiafiltration was effective in patients with acute liver failure, and consciousness was maintained for the duration of artificial liver support, even in those in whom it was considered that hepatic function was completely abolished.</p

    Boost Camp’, a universal school-based transdiagnostic prevention program targeting adolescent emotion regulation; evaluating the effectiveness by a clustered RCT : a protocol paper

    Get PDF
    Abstract Background The transition from childhood into adolescence can be considered as a critical developmental period. Moreover, adolescence is associated with a decreased use of adaptive emotion regulation strategies and an increased use of maladaptive emotion regulation strategies increasing the risk of emotional problems. Targeting emotion regulation is therefore seen as an innovative prevention approach. The present study aims to evaluate the effectiveness of Boost camp, an innovative school-based prevention program targeting ER, on adolescents’ emotion regulation skills and emotional wellbeing. Also secondary outcomes and possible moderators will be included. Methods The aim is to reach 300 adolescents (16 class groups, 6 schools) in their first year of high school. A clustered Randomized Controlled Trial (RCT) with two conditions, intervention (n = 150) and control (n = 150), will be set up. Adolescents in the intervention condition will receive 14 lessons over the course of 2 days, followed by Booster sessions, and will be compared with adolescents in a non-intervention control group. The outcomes will be measured by self-report questionnaires at baseline, immediately after Boost camp, and at three and 6 months follow-up. Discussion Data-collection is planned to be completed in May 2018. Data-analyses will be finished the end of 2018. The presented paper describes the Boost camp program and the clustered RCT design to evaluate its effectiveness. It is expected that Boost camp will have beneficial effects. If found effective, Boost camp will have the potential to increase adolescent’s ER and well-being, and reduce the risk to become adults in need. The trials is registered on the 13th of June 2017 in ISRCTN registry [ISRCTN68235634]

    The apicomplexan plastid and its evolution

    Get PDF
    Protistan species belonging to the phylum Apicomplexa have a non-photosynthetic secondary plastid—the apicoplast. Although its tiny genome and even the entire nuclear genome has been sequenced for several organisms bearing the organelle, the reason for its existence remains largely obscure. Some of the functions of the apicoplast, including housekeeping ones, are significantly different from those of other plastids, possibly due to the organelle’s unique symbiotic origin

    Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    Get PDF
    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines

    Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

    Get PDF
    Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP–based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe
    corecore