7 research outputs found

    Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair

    Get PDF
    Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB) repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ), single-strand annealing (SSA), and homology directed repair (HDR/GC). Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI–induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy

    Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models.

    No full text
    To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry

    p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair

    Get PDF
    The p53 family activates many of the same genes in response to DNA damage. Because p63 and p73 have structural differences from p53 and play distinct biological functions in development and metastasis, it is likely that they activate a unique transcriptional network. Therefore, we performed a genome-wide analysis using cells lacking the p53 family members after treatment with DNA damage. We identified over 100 genes involved in multiple pathways that were uniquely regulated by p63 or p73, and not p53. Further validation indicated that BRCA2, Rad51, and mre11 are direct transcriptional targets of p63 and p73. Additionally, cells deficient for p63 and p73 are impaired in DNA repair and p63+/−;p73+/− mice develop mammary tumors suggesting a novel mechanism whereby p63 and p73 suppress tumorigenesis

    The Birds of Kentucky

    No full text

    Peroral Biopsy of the Small Intestine

    No full text

    Medical genetics 1961

    No full text
    corecore