593 research outputs found

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Parental Reports of Infant and Child Eating Behaviors are not Affected by Their Beliefs About Their Twins’ Zygosity

    Get PDF
    Parental perception of zygosity might bias heritability estimates derived from parent rated twin data. This is the first study to examine if similarities in parental reports of their young twins’ behavior were biased by beliefs about their zygosity. Data were from Gemini, a British birth cohort of 2402 twins born in 2007. Zygosity was assessed twice, using both DNA and a validated parent report questionnaire at 8 (SD = 2.1) and 29 months (SD = 3.3). 220/731 (8 months) and 119/453 (29 months) monozygotic (MZ) pairs were misclassified as dizygotic (DZ) by parents; whereas only 6/797 (8 months) and 2/445 (29 months) DZ pairs were misclassified as MZ. Intraclass correlations for parent reported eating behaviors (four measured at 8 months; five at 16 months) were of the same magnitude for correctly classified and misclassified MZ pairs, suggesting that parental zygosity perception does not influence reporting on eating behaviors of their young twins

    An Empirical Comparison of Information-Theoretic Criteria in Estimating the Number of Independent Components of fMRI Data

    Get PDF
    BACKGROUND: Independent Component Analysis (ICA) has been widely applied to the analysis of fMRI data. Accurate estimation of the number of independent components of fMRI data is critical to reduce over/under fitting. Although various methods based on Information Theoretic Criteria (ITC) have been used to estimate the intrinsic dimension of fMRI data, the relative performance of different ITC in the context of the ICA model hasn't been fully investigated, especially considering the properties of fMRI data. The present study explores and evaluates the performance of various ITC for the fMRI data with varied white noise levels, colored noise levels, temporal data sizes and spatial smoothness degrees. METHODOLOGY: Both simulated data and real fMRI data with varied Gaussian white noise levels, first-order auto-regressive (AR(1)) noise levels, temporal data sizes and spatial smoothness degrees were carried out to deeply explore and evaluate the performance of different traditional ITC. PRINCIPAL FINDINGS: Results indicate that the performance of ITCs depends on the noise level, temporal data size and spatial smoothness of fMRI data. 1) High white noise levels may lead to underestimation of all criteria and MDL/BIC has the severest underestimation at the higher Gaussian white noise level. 2) Colored noise may result in overestimation that can be intensified by the increase of AR(1) coefficient rather than the SD of AR(1) noise and MDL/BIC shows the least overestimation. 3) Larger temporal data size will be better for estimation for the model of white noise but tends to cause severer overestimation for the model of AR(1) noise. 4) Spatial smoothing will result in overestimation in both noise models. CONCLUSIONS: 1) None of ITC is perfect for all fMRI data due to its complicated noise structure. 2) If there is only white noise in data, AIC is preferred when the noise level is high and otherwise, Laplace approximation is a better choice. 3) When colored noise exists in data, MDL/BIC outperforms the other criteria

    A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.</p> <p>Methods/Design</p> <p>This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome.</p> <p>Discussion</p> <p>This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01191632">NCT01191632</a></p

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore