61 research outputs found

    Theoretical and Numerical Investigation of Liquid-Gas Interface Location of Capillary Driven Flow During the Time Throughout Circular Microchannels

    Full text link
    The main aim of this study is to find the best, most rapid, and the most accurate numerical method to find the liquid-gas interface of capillary driven flow during the time in circular Microchannels by using COMSOL Multiphysics software. Capillary driven flow by eliminating micropumps or any physical pressure gradient generators can make the microfluidic devices cheaper and more usable. Hence, by using this two-phase flow, the final costs of lots of microfluidic devices and lab-on-a-chip can significantly be decreased and help them to be commercialized. The first step to employing the capillary flow in these devices is the simulation of this flow inside the microchannels. One of the most common and valid software for this work is COMSOL Multiphysics; this fact reveals the importance of this study. In this research study, simulation results obtained by using two possible numerical methods in this software, for capillary flows of water and ethanol in two different circular microchannels, verified and compared with four other methods, which verified experimentally before. Finally, the most accurate and time-saving numerical method of this software will be specified. This appropriate technique can contribute to simulate microfluidic and lab-on-a-chip devices, which are made of different mechanical and electrical parts, in COMSOL Multiphysics software by choosing the best method.Comment: 7 pages, 13 figures, 7 tables, 2017 5th International Conference on Robotics and Mechatronics (ICROM

    Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures

    Get PDF
    Advanced gas turbine engines, which use hot section airfoil cooling, present a wide range of design problems. The frequencies of applied loads and the natural frequencies of the blade also are important since they have significant effects on failure of the component due to fatigue phenomenon. Due to high temperature environment the thermal creep and fatigue are quite severe. One-dimensional creep model, using ANSYS has been formulated in order to predict the creep life of a gas turbine engine blade. Innovative mathematical models for the prediction of the operating life of aircraft components, specifically gas turbine blades, which are subjected to creep-fatigue at high temperatures, are proposed. The components are modeled by FEM, mathematically, and using similitude principles. Three models have been suggested and evaluated numerically and experimentally. Using FEM method for natural frequencies causes phenomena such as curve veering which is studied in more detail. The simulation studies on the life-limiting modes of failure, as well as estimating the expected lifetime of the blade, using the proposed models have been carried out. Although the scale model approach has been used for quite some time, the thermal scaling has been used in this study for the first time. The only thermal studies in literature using scaling for structures is by NASA in which materials of both the prototype and the model are the same, but in the present study materials also are different. The finite element method is employed to model the structure. Because of stress redistribution due to the creep process, it is necessary to include a full inelastic creep step in the finite element formulation. Otherwise over-conservative creep life predictions will be estimated if only the initial elastic stresses are considered. The experimental investigations are carried out in order to validate the models. The main contributions in the thesis are: (1) Using similitude theory for life prediction of components in general, and specifically using thermal scaling for the first time for prototype and model with two different materials. (2) Developing 1-D creep ANSYS macro to study creep effects to get meaningful results for industrial applications of gas turbine blade. (3) Analyzing the curve veering and flattening phenomena in rotating blade at thermal environment, using Lagrange-Bhat method. (4) Simple constitutive models in creep-fatigue interaction are proposed that can predict the lifetime in complicated situations of creep-fatigue, using the pure creep and pure fatigue test data

    Evaluation of oral hygiene care of under 4 years old children by their mothers based on the Health Belief Model

    Get PDF
    Objective: Oral health is one of the basic components of preschool children's health. Young children completely depend on their parents, specially their mothers, to have an appropriate oral health. Health belief model shows the relationship between some structures related to personal perceptions, barriers and perceived self-efficiency, and behavior. This study aims to determine the oral health  care status of children under 4 by their mother according to health belief model in Tehran.Methods: In this cross-sectional (descriptive-analytic) study, 200 mothers with children under 4 who visited health care centers under the authority of Shahid Beheshti University of medical Sciences were randomly chosen. A questionnaire which was designed according to health belief  model (HBM) was used to collect data. Collected data was analyzed by SPSS software.Results: It was found that only in 10% of the cases knowledge score was favorable. Participants scored 50.85%, 75.93%, 72.23%, 92.06%, 48.2%, 86.31%, 64.07% in knowledge structures, perceived susceptibility, perceived severity, perceived benefits, perceived barriers, self efficiency  and behavior respectively. Knowledge structures (p<0.01, r=0.276), perceived barriers (p<0/01, r=0/314) and perceived self efficiency (p<0.01, r=0.269) showed positive correspondence and significant relationship with the oral and dental health behaviors by their mothers. Structures of health belief model could describe 17.9% of behavior variance. Amongst these structures, perceived barriers had more important role.Conclusion: This study estimated that the behavioral status of oral and dental health care of children under 4 by their mothers is moderate. Therefore planning an educational program using behavioral models and theories, such as health belief model is suggested, so that it can increase knowledge and self-efficiency and reduce perceptive barriers to promote children's oral health

    Ninety-six–hour starved peripheral blood mononuclear cell supernatant inhibited LA7 breast cancer stem cells induced tumor via reduction in angiogenesis and alternations in Gch1 and Spr expressions

    Get PDF
    Introduction The microenvironment of solid tumors such as breast cancer is heterogeneous and complex, containing different types of cell, namely, cancer stem cells and immune cells. We previously reported the immunoregulatory behavior of the human immune cell in a solid tumor microenvironment-like culture under serum starvation stress for 96 h. Here, we examined the effect of this culture-derived solution on breast cancer development in rats. Method Ninety-six–hour starved PBMCs supernatant (96 h-SPS) was collected after culturing human PBMCs for 96 h under serum starvation condition. Breast cancer stem cells, LA7 cell line, was used for in vitro study by analyzing gene expression status and performing cytotoxicity, proliferation, scratch wound healing assays, followed by in vivo tumor induction in three groups of mature female Sprague Dawley rats. Animals were treated with 96 h-SPS or RPMI and normal saline as control, n = 6 for each group. After biochemical analysis of iron, lactate, and pH levels in the dissected tumors, Ki67 antigen expression, angiogenesis, and necrosis evaluation were carried out. Metabolic-related gene expression was assessed using RT-qPCR. Moreover, 96 h-SPS composition was discovered by Nano-LC-ESI-MS/MS. Results 96 h-SPS solution reduced the LA7 cell viability, proliferation, and migration and Gch1 and Spr genes expression in vitro ( p < 0.05), whereas stemness gene Oct4 was upregulated ( p < 0.01). The intracellular lactate was significantly decreased in the 96 h-SPS treated group ( p = 0.007). In this group, Gch1 and Spr were significantly downregulated ( p < 0.05), whereas the Sox2 and Oct4 expression was not changed significantly. The number of vessels and mitosis (Ki67 + cells) in the 96 h-SPS–treated group was significantly reduced ( p = 0.024). The increased rate of necrosis in this group was statistically significant ( p = 0.04). Last, proteomics analysis revealed candidate effectors’ components of 96 h-SPS solution. Conclusion 96 h-SPS solution may help to prevent cancer stem cell mediated tumor development. This phenomenon could be mediated through direct cytotoxic effects, inhibition of cell proliferation and migration in association with reduction in Gch1 and Spr genes expression, angiogenesis and mitosis rate, and necrosis augmentation. The preliminary data obtained from the present study need to be investigated on a larger scale and can be used as a pilot for further studies on the biology of cancer development

    The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Communicable disease control has long been a focus of global health policy. There have been substantial reductions in the burden and mortality of communicable diseases among children younger than 5 years, but we know less about this burden in older children and adolescents, and it is unclear whether current programmes and policies remain aligned with targets for intervention. This knowledge is especially important for policy and programmes in the context of the COVID-19 pandemic. We aimed to use the Global Burden of Disease (GBD) Study 2019 to systematically characterise the burden of communicable diseases across childhood and adolescence. METHODS: In this systematic analysis of the GBD study from 1990 to 2019, all communicable diseases and their manifestations as modelled within GBD 2019 were included, categorised as 16 subgroups of common diseases or presentations. Data were reported for absolute count, prevalence, and incidence across measures of cause-specific mortality (deaths and years of life lost), disability (years lived with disability [YLDs]), and disease burden (disability-adjusted life-years [DALYs]) for children and adolescents aged 0-24 years. Data were reported across the Socio-demographic Index (SDI) and across time (1990-2019), and for 204 countries and territories. For HIV, we reported the mortality-to-incidence ratio (MIR) as a measure of health system performance. FINDINGS: In 2019, there were 3·0 million deaths and 30·0 million years of healthy life lost to disability (as measured by YLDs), corresponding to 288·4 million DALYs from communicable diseases among children and adolescents globally (57·3% of total communicable disease burden across all ages). Over time, there has been a shift in communicable disease burden from young children to older children and adolescents (largely driven by the considerable reductions in children younger than 5 years and slower progress elsewhere), although children younger than 5 years still accounted for most of the communicable disease burden in 2019. Disease burden and mortality were predominantly in low-SDI settings, with high and high-middle SDI settings also having an appreciable burden of communicable disease morbidity (4·0 million YLDs in 2019 alone). Three cause groups (enteric infections, lower-respiratory-tract infections, and malaria) accounted for 59·8% of the global communicable disease burden in children and adolescents, with tuberculosis and HIV both emerging as important causes during adolescence. HIV was the only cause for which disease burden increased over time, particularly in children and adolescents older than 5 years, and especially in females. Excess MIRs for HIV were observed for males aged 15-19 years in low-SDI settings. INTERPRETATION: Our analysis supports continued policy focus on enteric infections and lower-respiratory-tract infections, with orientation to children younger than 5 years in settings of low socioeconomic development. However, efforts should also be targeted to other conditions, particularly HIV, given its increased burden in older children and adolescents. Older children and adolescents also experience a large burden of communicable disease, further highlighting the need for efforts to extend beyond the first 5 years of life. Our analysis also identified substantial morbidity caused by communicable diseases affecting child and adolescent health across the world. FUNDING: The Australian National Health and Medical Research Council Centre for Research Excellence for Driving Investment in Global Adolescent Health and the Bill & Melinda Gates Foundation

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019

    Get PDF
    Background: Globally, transport and unintentional injuries persist as leading preventable causes of mortality and morbidity for adolescents. We sought to report comprehensive trends in injury-related mortality and morbidity for adolescents aged 10–24 years during the past three decades. Methods: Using the Global Burden of Disease, Injuries, and Risk Factors 2019 Study, we analysed mortality and disability-adjusted life-years (DALYs) attributed to transport and unintentional injuries for adolescents in 204 countries. Burden is reported in absolute numbers and age-standardised rates per 100 000 population by sex, age group (10–14, 15–19, and 20–24 years), and sociodemographic index (SDI) with 95% uncertainty intervals (UIs). We report percentage changes in deaths and DALYs between 1990 and 2019. Findings: In 2019, 369 061 deaths (of which 214 337 [58%] were transport related) and 31·1 million DALYs (of which 16·2 million [52%] were transport related) among adolescents aged 10–24 years were caused by transport and unintentional injuries combined. If compared with other causes, transport and unintentional injuries combined accounted for 25% of deaths and 14% of DALYs in 2019, and showed little improvement from 1990 when such injuries accounted for 26% of adolescent deaths and 17% of adolescent DALYs. Throughout adolescence, transport and unintentional injury fatality rates increased by age group. The unintentional injury burden was higher among males than females for all injury types, except for injuries related to fire, heat, and hot substances, or to adverse effects of medical treatment. From 1990 to 2019, global mortality rates declined by 34·4% (from 17·5 to 11·5 per 100 000) for transport injuries, and by 47·7% (from 15·9 to 8·3 per 100 000) for unintentional injuries. However, in low-SDI nations the absolute number of deaths increased (by 80·5% to 42 774 for transport injuries and by 39·4% to 31 961 for unintentional injuries). In the high-SDI quintile in 2010–19, the rate per 100 000 of transport injury DALYs was reduced by 16·7%, from 838 in 2010 to 699 in 2019. This was a substantially slower pace of reduction compared with the 48·5% reduction between 1990 and 2010, from 1626 per 100 000 in 1990 to 838 per 100 000 in 2010. Between 2010 and 2019, the rate of unintentional injury DALYs per 100 000 also remained largely unchanged in high-SDI countries (555 in 2010 vs 554 in 2019; 0·2% reduction). The number and rate of adolescent deaths and DALYs owing to environmental heat and cold exposure increased for the high-SDI quintile during 2010–19. Interpretation: As other causes of mortality are addressed, inadequate progress in reducing transport and unintentional injury mortality as a proportion of adolescent deaths becomes apparent. The relative shift in the burden of injury from high-SDI countries to low and low–middle-SDI countries necessitates focused action, including global donor, government, and industry investment in injury prevention. The persisting burden of DALYs related to transport and unintentional injuries indicates a need to prioritise innovative measures for the primary prevention of adolescent injury. Funding: Bill &amp; Melinda Gates Foundation
    corecore