257 research outputs found

    Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with S4S_4 Flavor Symmetry

    Full text link
    We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S4S_4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle Ξ12\theta_{12} depends on tan⁥ÎČ\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on Ξ12\theta_{12} in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tan⁥ÎČ\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.Comment: 23 pages, 6figure

    Radiative Corrections to Neutrino Mixing and CP Violation in the Minimal Seesaw Model with Leptogenesis

    Full text link
    Radiative corrections to neutrino mixing and CP violation are analyzed in the minimal seesaw model with two heavy right-handed neutrinos. We find that textures of the effective Majorana neutrino mass matrix are essentially stable against renormalization effects. Taking account of the Frampton-Glashow-Yanagida ansatz for the Dirac neutrino Yukawa coupling matrix, we calculate the running effects of light neutrino masses, lepton flavor mixing angles and CP-violating phases for both m1=0m_1 =0 (normal mass hierarchy) and m3=0m_3 =0 (inverted mass hierarchy) cases in the standard model and in its minimal supersymmetric extension. Very instructive predictions for the cosmological baryon number asymmetry via thermal leptogenesis are also given with the help of low-energy neutrino mixing quantities.Comment: 21 pages, 6 figures; more references adde

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens
    • 

    corecore