826 research outputs found
Euler configurations and quasi-polynomial systems
In the Newtonian 3-body problem, for any choice of the three masses, there
are exactly three Euler configurations (also known as the three Euler points).
In Helmholtz' problem of 3 point vortices in the plane, there are at most three
collinear relative equilibria. The "at most three" part is common to both
statements, but the respective arguments for it are usually so different that
one could think of a casual coincidence. By proving a statement on a
quasi-polynomial system, we show that the "at most three" holds in a general
context which includes both cases. We indicate some hard conjectures about the
configurations of relative equilibrium and suggest they could be attacked
within the quasi-polynomial framework.Comment: 21 pages, 6 figure
Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides
We report the observation of second-harmonic generation in stoichiometric
silicon nitride waveguides grown via low-pressure chemical vapour deposition.
Quasi-rectangular waveguides with a large cross section were used, with a
height of 1 {\mu}m and various different widths, from 0.6 to 1.2 {\mu}m, and
with various lengths from 22 to 74 mm. Using a mode-locked laser delivering
6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the
incoming power was coupled through the waveguide, making maximum average powers
of up to 15 mW available in the waveguide. Second-harmonic output was observed
with a delay of minutes to several hours after the initial turn-on of pump
radiation, showing a fast growth rate between 10 to 10 s,
with the shortest delay and highest growth rate at the highest input power.
After this first, initial build-up, the second-harmonic became generated
instantly with each new turn-on of the pump laser power. Phase matching was
found to be present independent of the used waveguide width, although the
latter changes the fundamental and second-harmonic phase velocities. We address
the presence of a second-order nonlinearity and phase matching, involving an
initial, power-dependent build-up, to the coherent photogalvanic effect. The
effect, via the third-order nonlinearity and multiphoton absorption leads to a
spatially patterned charge separation, which generates a spatially periodic,
semi-permanent, DC-field-induced second-order susceptibility with a period that
is appropriate for quasi-phase matching. The maximum measured second-harmonic
conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\mu}m
cross section and 36 mm length, corresponding to 53 {\mu}W at 532 nm with 13 mW
of IR input coupled into the waveguide. The according amounts to
3.7 pm/V, as retrieved from the measured conversion efficiency.Comment: 20 pages, 10 figure
Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity
In this paper, we solve the field equations in metric f(R) gravity for
Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We
find two types of non-vacuum solutions by taking isotropic and anisotropic
fluids as the source of matter and dark energy. The physical behavior of these
solutions is analyzed and compared in the future evolution with the help of
some physical and geometrical parameters. It is concluded that in the presence
of isotropic fluid, the model has singularity at and represents
continuously expanding shearing universe currently entering into phantom phase.
In anisotropic fluid, the model has no initial singularity and exhibits the
uniform accelerating expansion. However, the spacetime does not achieve
isotropy as in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc
Timing of first union among second-generation Turks in Europe: The role of parents, peers and institutional context
This study examines the influence of parents and peers on first union timing among the Turkish second generation in Europe using pooled data from the TIES survey. Cross-national differences in union formation are assessed by comparing countries with different integration policies and welfare regimes. Analyses show that both parents and peers are relevant predictors of entry into union: More modern parental characteristics and contact with non-coethnic peers result in postponement of union entry. Furthermore, parental and peer influences are found to be rather similar in all seven countries despite a variety of integration policies. Actual timing differences between countries may be caused by welfare state provisions directed at young adults
Realistic Equations of State for the Primeval Universe
Early universe equations of state including realistic interactions between
constituents are built up. Under certain reasonable assumptions, these
equations are able to generate an inflationary regime prior to the
nucleosynthesis period. The resulting accelerated expansion is intense enough
to solve the flatness and horizon problems. In the cases of curvature parameter
\kappa equal to 0 or +1, the model is able to avoid the initial singularity and
offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ
Methods of measuring residual stresses in components
Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components.
Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments
Neutralino Dark Matter from MSSM Flat Directions in light of WMAP Result
The minimal supersymmetric standard model (MSSM) has a truly supersymmetric
way to explain both the baryon asymmetry and cold dark matter in the present
Universe, that is, ``Affleck-Dine baryo/DM-genesis.'' The associated late-time
decay of Q-balls directly connects the origins of the baryon asymmetry and dark
matter, and also predicts a specific nature of the LSP. In this paper, we
investigate the prospects for indirect detection of these dark matter
candidates observing high energy neutrino flux from the Sun, and hard positron
flux from the halo. We also update the previous analysis of the direct
detection in hep-ph/0205044 by implementing the recent result from WMAP
satellite.Comment: 32 pages, including 40 figure
Why do sanctions need time to work? Adjustment, learning and anticipation
Economists disagree on the influence of time on the probability of success of economic sanctions. Some argue that it takes time to convince the sanction target. Others stress that economic adjustment will reduce incentives to comply. We seek to reconcile these different literatures, modelling the target's decision to comply as a function of both (anticipatory) economic adjustment and Bayesian learning. We show that sanctions which do not work instantaneously (ie there is neither political compliance nor economic adjustment) can work in the long run, but only if the learning effect dominates the adjustment effect. A sufficient condition for ultimate compliance is that (potential) sanction damage that cannot be avoided by adjustment in the long run exceeds the yield of misconduct
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
- …