415 research outputs found

    Ultrafast electrooptic dual-comb interferometry

    Get PDF
    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance

    Electro-optic dual-comb interferometry over 40-nm bandwidth

    Full text link
    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy

    Optical Frequency Comb Noise Characterization Using Machine Learning

    Full text link
    A novel tool, based on Bayesian filtering framework and expectation maximization algorithm, is numerically and experimentally demonstrated for accurate frequency comb noise characterization. The tool is statistically optimum in a mean-square-error-sense, works at wide range of SNRs and offers more accurate noise estimation compared to conventional methods

    Electro optic combs rise above the noise

    Get PDF
    Electro-optic modulation of light can have a precision equivalent to one optical-field cycl

    Shaping the ultrafast temporal correlations of thermal-like photons

    Get PDF
    We show that the temporal correlations between two light beams arising from a broadband thermal-like source can be controlled in the femtosecond regime. Specifically, by introducing spectral phase-only masks in the path of one of the beams, we show that the timing and strength of the photon correlations can be programmed on demand. This example demonstrates that the interbeam second-order coherence function propagates as a phase-sensitive ultrafast wave packet in the path towards the detectors, and is thus, susceptible to be modified by acting on just one of the beams. For quite some time, it has been thought that this could only happen with sources showing time-energy entanglement. Our work shows that such a property is due to the existence of a certain type of correlation, but not necessarily the entanglementPeer ReviewedPostprint (published version

    Optical bandgap engineering in nonlinear silicon nitride waveguides

    Get PDF
    Silicon nitride is awell-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect

    Lossless equalization of frequency combs

    Get PDF
    Frequency combs obtained by sinusoidal phase modulation of narrow-band continuous-wave lasers are widely used in the field of optical communications. However, the resulting spectral envelope of the comb is not at. In this Letter, we propose a general and eficient approach to achieve at frequency combs with tunable bandwidth. The idea is based on a two-step process. First, eficient generation of a train with temporal at-top-pulse profile is required. Second, we use large parabolic phase modulation in every train period in order to map the temporal intensity shape into the spectral domain. In this way, the resulting spectral envelope is at and the size is tunable with the chirping rate. Two diferent schemes are proposed and verified through numerical simulations

    Thermal noise reduction in soliton microcombs via laser self-cooling

    Get PDF
    Thermal noise usually dominates the low-frequency region of the optical phase noise of soliton microcombs, which leads to decoherence that limits many aspects of applications. In this work, we demonstrate a simple and reliable way to mitigate this noise by laser cooling with a pump laser. The key is rendering the pump laser to simultaneously excite two neighboring cavity modes from different families that are respectively red and blue detuned, one for soliton generation and the other for laser cooling

    Performance tradeoffs in low-loss Si3N4 waveguides for linear and nonlinear applications

    Get PDF
    We experimentally analyze tradeoffs in terms of waveguide losses, dispersion engineering and single-mode behaviour for different waveguide geometries. Our results suggests that photonic integrated circuits relying on nonlinear waveguides benefit from including a dedicated waveguide geometry via multi-layer integration to yield a seven-fold improvement in terms of loss

    A unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light

    Get PDF
    The analysis of optical pulse generation by phase modulation of narrowband continuous-wave light, and subsequent propagation through a group-delay-dispersion circuit, is usually performed in terms of the so-called bunching parameter. This heuristic approach does not provide theoretical support for the electrooptic flat-top-pulse generation reported recently. Here, we perform a waveform synthesis in terms of the Fresnel images of the periodically phase-modulated input light. In particular, we demonstrate flat-top-pulse generation with a duty ratio of 50% at a quarter of the Talbot condition for the sinusoidal phase modulation. Finally, we propose a binary modulation format to generate a well-defined square-wave-type optical bit pattern.Comment: 10 pages, 5 figures. Submitted to Optics Expres
    • …
    corecore