102 research outputs found

    Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions

    Get PDF
    Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.Fondo Europeo de Desarrollo Regional (FEDER) IJCI-2015-25845, UPO-1263216, UHU-1266324Ministerio de Ciencia, Innovación y Universidades RTI2018- 096884-B-C31, RTI2018-096884-B-C33German Waldklimafond FKZ 28WC-4-077-01Bavarian State Ministry for Food, Agriculture, and Forestry ST32

    Drought-induced decline and mortality of silver fir differ among three sites in Southern France

    Get PDF
    Abstract : Context : In the Mediterranean area, numerous decline and mortality processes have been reported during recent decades, affecting forest dynamics. They are likely due to increases in summer drought severity and therefore especially affect drought-sensitive species, such as silver fir (Abies alba Mill.). Aims and methods : To understand the relationships between tree growth, crown condition and mortality probability, radial growth trends of healthy, declining (showing crown damages) and dead trees were compared using tree-ring analysis. Factors involved in determining this mortality were also examined at the plot and tree level using altitudinal gradients on three contrasted sites in southeastern France. Results : Individuals with higher inter-annual variability in growth were more prone to dieback. At two sites, dead trees displayed lower growth rates over their entire lifetime, while, on the last site, their juvenile growth rate was higher. Trees with crown damage had higher growth rates than healthy trees on one site, and their radial growth trends over time always differed from those of dead trees. Mortality and crown damage were little related to altitude, but strongly differed between sites and among plots underlining the importance of local edaphic and topographic conditions. Conclusion : These results suggest that the relationships among mortality probability, crown condition and growth can differ among sites, and highlight the impact of soil conditions and the need to assess them in tree mortality studies

    When a tree dies in the forest : scaling climate-driven tree mortality to ecosystem water and carbon fluxes

    Get PDF
    Altres ajuts: COST FP1106 network STReESS.Drought- and heat-driven tree mortality, along with associated insect outbreaks, have been observed globally in recent decades and are expected to increase in future climates. Despite its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where the effects of mortality are a function of the mortality attributes, such as spatial clustering and functional role of the trees killed, and ecosystem properties, such as productivity and diversity. We draw upon remote-sensing data and ecosystem flux data to illustrate this framework and place climate-driven tree mortality in the context of other major disturbances. We find that emerging evidence suggests that climate-driven tree mortality impacts may be relatively small and recovery times are remarkably fast (~4 years for net ecosystem production). We review the key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of variation needed for better monitoring and modeling of the impacts of tree mortality and provide a foundation for including climate-driven tree mortality in a disturbance framework

    Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion

    Get PDF
    The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 +/- 0.006 Mg C ha(-1) year(-1) km(-1) for P. abies and 0.93 +/- 0.010 Mg C ha(-1) year(-1) km(-1) for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.Peer reviewe

    Risks, benefits, and knowledge gaps of non-native tree species in Europe

    Get PDF
    Changing ecosystem conditions and diverse socio-economical events have contributed to an ingrained presence of non-native tree species (NNTs) in the natural and cultural European landscapes. Recent research endeavors have focused on different aspects of NNTs such as legislation, benefits, and risks for forestry, emphasizing that large knowledge gaps remain. As an attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action (CA19128) network, we established an open-access questionnaire that allows both academic experts and practitioners to provide information regarding NNTs from 20 European countries. Then, we integrated the data originating from the questionnaire, related to the country-based assessment of both peer-reviewed and grey literature, with information from available datasets (EUFORGEN and EU-Forest), which gave the main structure to the study and led to a mixed approach review. Finally, our study provided important insights into the current state of knowledge regarding NNTs. In particular, we highlighted NNTs that have shown to be less commonly addressed in research, raising caution about those characterized by an invasive behavior and used for specific purposes (e.g., wood production, soil recultivation, afforestation, and reforestation). NNTs were especially explored in the context of resilient and adaptive forest management. Moreover, we emphasized the assisted and natural northward migration of NNTs as another underscored pressing issue, which needs to be addressed by joint efforts, especially in the context of the hybridization potential. This study represents an additional effort toward the knowledge enhancement of the NNTs situation in Europe, aiming for a continuously active common source deriving from interprofessional collaboration.info:eu-repo/semantics/publishedVersio

    Towards a common methodology for developing logistic tree mortality models based on ring-width data

    Get PDF
    Tree mortality is a key process shaping forest dynamics. Thus, there is a growing need for indicators of the likelihood of tree death. During the last decades, an increasing number of tree-ring based studies have aimed to derive growth-mortality functions, mostly using logistic models. The results of these studies, however, are difficult to compare and synthesize due to the diversity of approaches used for the sampling strategy (number and characteristics of ‘alive’ and ‘death’ observations), the type of explanatory growth variables included (level, trend, etc.), and the length of the time-window (number of years preceding the alive/death observation) that maximized the discrimination ability of each growth variable. Here, we assess the implications of key methodological decisions when developing tree-ring based growth-mortality relationships using logistic mixed-effects regression models. As examples we use published tree-ring datasets from Abies alba (13 different sites), Nothofagus dombeyi (one site) and Quercus petraea (one site). Our approach is based on a constant sampling size and aims at (1) assessing the dependency of growth-mortality relationships on the statistical sampling scheme used; (2) determining the type of explanatory growth variables that should be considered; and (3) identifying the best length of the time window used to calculate them. The performance of tree-ring based mortality models was reasonably high for all three species (Area Under the receiving operator characteristics Curve: AUC > 0.7). Growth level variables were the most important predictors of mortality probability for two species (A. alba, N. dombeyi), while growth-trend variables need to be considered for Q. petraea. In addition, the length of the time window used to calculate each growth variable was highly uncertain and depended on the sampling scheme, as some growth-mortality relationships varied with tree age. The present study accounts for the main sampling-related biases to determine reliable species-specific growth-mortality relationships. Our results highlight the importance of using a sampling strategy that is consistent with the research question. Moving towards a common methodology for developing reliable growth-mortality relationships is an important step towards improving our understanding of tree mortality across species and its representation in dynamic vegetation models

    Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale

    Get PDF
    Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics

    Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth

    Get PDF
    Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.Peer reviewe
    corecore