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Changing ecosystem conditions and diverse socio-economical events have

contributed to an ingrained presence of non-native tree species (NNTs) in

the natural and cultural European landscapes. Recent research endeavors

have focused on different aspects of NNTs such as legislation, benefits,

and risks for forestry, emphasizing that large knowledge gaps remain. As an

attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action

(CA19128) network, we established an open-access questionnaire that allows

Frontiers in Ecology and Evolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.908464
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.908464&domain=pdf&date_stamp=2022-10-28
https://doi.org/10.3389/fevo.2022.908464
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2022.908464/full
https://orcid.org/0000-0001-9486-6988
https://orcid.org/0000-0002-4764-0705
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-908464 October 26, 2022 Time: 13:30 # 2

Dimitrova et al. 10.3389/fevo.2022.908464

both academic experts and practitioners to provide information regarding

NNTs from 20 European countries. Then, we integrated the data originating

from the questionnaire, related to the country-based assessment of both

peer-reviewed and grey literature, with information from available datasets

(EUFORGEN and EU-Forest), which gave the main structure to the study

and led to a mixed approach review. Finally, our study provided important

insights into the current state of knowledge regarding NNTs. In particular, we

highlighted NNTs that have shown to be less commonly addressed in research,

raising caution about those characterized by an invasive behavior and used

for specific purposes (e.g., wood production, soil recultivation, afforestation,

and reforestation). NNTs were especially explored in the context of resilient

and adaptive forest management. Moreover, we emphasized the assisted

and natural northward migration of NNTs as another underscored pressing

issue, which needs to be addressed by joint efforts, especially in the context

of the hybridization potential. This study represents an additional effort

toward the knowledge enhancement of the NNTs situation in Europe, aiming

for a continuously active common source deriving from interprofessional

collaboration.

KEYWORDS

climate change, forestry, invasive species, distribution, hybridization, database, grey
literature, assisted migration

Introduction

Non-native tree species in Europe:
Context and aims of the work

Non-native tree species (NNTs) are not a novelty in
European forests, where the diversity has been established
through evolutionary mechanisms and human impact
(Bradshaw, 2004). Although most NNTs have been purposefully
introduced, in monoculture plantations, mixed managed stands,
and native forests during the past centuries, defining NNTs is a
demanding task (Brus et al., 2019). Alpert et al. (2000) defined
non-native as species “having been transported into a region by
humans across a barrier that has apparently prevented natural
dispersal so far.” The early utilitarian introduction of species to
serve as an additional food and wood source, like in the case of
Corylus avellana, Castanea sativa, and Juglans regia, was later
extended to introduction due to curiosity, for ornamental, and
forest restoration purposes (Nyssen et al., 2016). However, the
discussion regarding the use of NNTs has recently shifted from
their forestry-benefiting services to their long-term effects on
ecosystems, and notably toward their potential role in climate
change mitigation (Frischbier et al., 2019; Pötzelsberger et al.,
2020a). The integration of species that demonstrate higher
tolerance and better adaptive potential to climate change is a
key strategy in adaptive forest management (Bolte et al., 2009).

Increasing the number and genetic diversity may help construct
more resistant and adaptable forest ecosystems that are better
suited to respond to climate changes (Royer-Tardif et al., 2021).
However the potential risks of NNTs, including their invasive
potential (Pötzelsberger et al., 2020a; Bindewald et al., 2021),
are not negligible.

In particular, while forest ecosystems are fundamental
for reducing the impacts of climate change, they are also
severely impacted by extreme weather events, which restrict the
ecosystem services they provide and the general tree species
distribution across Europe (Nordén et al., 2014; Dyderski
et al., 2018; Buras and Menzel, 2019; Montagnoli et al., 2022).
These climate-change related modifications have contributed to
increased abiotic stressors (e.g., drought, salinity, temperature
extremes) and biotic risks in forests (e.g., pathogens and
pests, invasive species) (Teshome et al., 2020). Along with the
anthropogenic pressures, the structure and dynamics of the
forest landscape are changing (Bolte et al., 2009), impacting both
native and non-native trees which provide numerous ecosystem
services, ranging from provisioning, to regulatory, cultural,
and ecological (Castro-Díez et al., 2019). The current role of
forestry as a climate change mitigation tool is widely recognized
(Canadell and Raupach, 2008) and anticipating the forest’s
response to these climatic challenges is crucial for ensuring the
provisioning of ecosystem services (Royer-Tardif et al., 2021).
Mixed forests with native and/or NNTs are regarded as more
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resilient to monocultures when it comes to the resistance against
effects of climate change (Ammer, 2019). Therefore, NNTs have
been and continue to be explored for the potential benefits (e.g.,
productivity, biodiversity) without disregarding the risks (e.g.,
potential invasiveness) (Bolte et al., 2009).

The status of a species, whether invasive or not, is
determined not only by the economic and ecological
characteristics, but also by the socio-cultural context, and
it is not fixed but constantly evolving with time (Heger, 2016).
On one hand, the anticipated potential of many NNTs (e.g.,
productivity potential, soil stabilization, and aesthetic function)
has facilitated their unplanned and unmonitored distribution.
In some contexts, this has already altered the perception of the
native landscape along with the composition and functioning
of existing ecosystems (Brundu and Richardson, 2016; Brus
et al., 2019). On the other hand, only some NNTs have exhibited
invasive potential, by severely repressing the native species and
introducing new pathogens, while many have been shown to
provide numerous ecosystem services, in forest and urban areas
(Alpert et al., 2000; Blackburn et al., 2014; Bartz and Kowarik,
2019). Past works exploring the risks and benefits of NNTs
agree that the task of comparing NNTs’ attributes and assessing
their impact at varying spatial and temporal scales is a major
challenge, which is highly context-dependent and limited to the
tree-specific characteristics (Blackburn et al., 2014; Bartz and
Kowarik, 2019; Castro-Díez et al., 2019; Bindewald et al., 2021).
It is notoriously difficult to identify specific plant traits that can
be consistently associated with higher invasive potential (Alpert
et al., 2000) and generalizing NNTs behavior as a cautionary
approach disregards the fact that it may greatly vary across
environmental conditions (Bartz and Kowarik, 2019). Thus, the
functional aspects and the services NNTs can provide under
certain conditions–rather than the origin of the species–require
more attention (Brus et al., 2019).

Despite their importance to forestry and agroforestry
systems, detailed information focusing on NNTs’ occurrence,
distribution, use, and risks for most European countries
is currently incomplete and scattered across published and
unpublished literature and databases, and often only available
in the local languages (Krumm and Vitkova, 2016; Brus et al.,
2019). As previously observed and what our experience has
shown during the preparation of the present study, the role and
acceptance of NNTs in Europe vary greatly among countries
due to several factors, i.e., the degree of native biodiversity, the
climatic conditions that encourage or limit the establishment of
NNTs, forest management practices, types of forest ownership,
legislation and standards, local communities motivation, and
land-use history (Koskela et al., 2013; Nunes et al., 2019;
Pötzelsberger et al., 2020a,b). Moreover, research efforts in the
field of NNTs have been strongly focused on the most common
ones (e.g., Robinia pseudoacacia, Prunus serotina, Acer negundo,
Quercus rubra, Ailanthus altissima, Acacia spp., Eucalyptus
spp., Pseudotsuga menziesii, Picea sitchensis) (Krumm and

Vitkova, 2016), while disregarding numerous other NNTs. This
is especially the case for the presumably less common NNTs, for
which information is under reported in peer-reviewed journals
(Castro-Díez et al., 2021).

Significant attempts for risk assessment frameworks that
would allow for better overview and subsequent management
improvement, as a risk mitigation strategy, in the case of NNTs
have been made (Sandvik et al., 2013; Ennos et al., 2019). For
instance, Bindewald et al. (2021) recently developed a new
and more inclusive methodological framework for NNTs site-
specific risk analysis; but as acknowledged by the authors,
frameworks cannot replace research efforts and monitoring
programs that provide the backbone information. Royer-
Tardif et al. (2021) provided a framework for quantitative
evaluation of five key components of tree adaptive capacity
to climate change and used it to evaluate 26 north-eastern
American tree species based on a literature review. Their
results indicate that no species maintains a consistent score
across the five components (adaptive capacity to climate
change, phenotypic plasticity, phenotypic diversity, and genetic
exchange between populations and species), indicating the
need for an interdisciplinary collaboration (Royer-Tardif et al.,
2021). These conclusions further emphasize the need for more
inclusive and serious research efforts. In the European context,
academia, and practice alike, face the lack of precise distribution
data and a comprehensive inventory that reflects the actual
on-field situation and includes all tree species. National Forest
Inventories (NFI) have served as the main source of information
for numerous works but obstacles such as grid variability in
sampling design and purphoses and data focused on only
certain aspects, i.e., wood production, have left considerable
gaps (Alberdi et al., 2019). The different approaches to
forest management and research scopes, necessitate a more
uniform and inclusive methodology regarding distribution
and experiences with NNTs. Furthermore, in Europe, the
distribution shift northward and westward is a natural process
as the southern peninsulas have probably served as a glacial
refugium for numerous species (Fagus sylvatica, Populus alba,
Populus tremula, Quercus spp. Abies alba, Pinus pinaster, etc.).
Recent research results show that shifts in climate niches
expected for 2060–2080 will be observed as early as 2040–
2060 and significantly threaten the current biodiversity and
forest management practices (Puchałka et al., 2021). Identifying
regions with climatological properties analogous to projected
conditions of a certain location (Buras and Menzel, 2019)
could be one approach in terms of retrospective investigation
of tree species suitability. Although not a novel approach, the
climate analogues need to be taken alongside other indicators
in terms of practical recommendation (Boiffin et al., 2017),
especially considering the history of land use, social, political,
and economic changes, along with regional climate conditions
and forest management practices that have combined impact on
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tree species utilization and distribution across Europe (Nunes
et al., 2019).

Nonetheless, species with a wider distribution range may
be composed of populations with higher local adaptability and
plasticity, and, thus, serve as promising candidates to face
climate pressure (Benito Garzón et al., 2011; Alizoti et al., 2022;
Prasad and Leites, 2022). Species migration has been greatly
impacted by anthropogenic activities and therefore differs
among species (Mattioni et al., 2013; Tíscar et al., 2018). These
assisted migrations are foreseen as a tool to help compromised
tree species since the velocity of climate change is faster than
the ability of trees to migrate and potentially adapt (Williams
and Dumroese, 2013; Leroy et al., 2020). Therefore, assisted
migration is a crucial part of adaptive forestry management.

However, assisted migrations further open the hybridization
question. Hybridization is a natural phenomenon, often
observed in secondary contact zones during post-glacial
colonization (Jaramillo-Correa et al., 2009; Fussi et al., 2010).
Thus, hybridization can be a major source of adaptive potential
by increasing genetic diversity, and allowing for preadapted
alleles to introgress into a population (Broadhurst et al., 2008;
Weeks et al., 2011; Aitken and Bemmels, 2016; Tigano and
Friesen, 2016). Hybridization could also break up beneficial
allele combinations, increase the risk of outbreeding depression,
and lead to a reduction in offspring fitness compared to the
parental generation (Edmands, 2006; Frankham et al., 2011).
This may result in an accelerated extinction of lineages or even
species (Rhymer and Simberloff, 1996; Todesco et al., 2016).
Due to assisted migrations, the hybridization output is also
very context-depended and can have both a negative (decline
in reproductive fitness and introgression) and a positive impact
(generating novel and more potent genetic combinations)
(Pollegioni et al., 2013), the latter being especially relevant in
mitigating climate change (Royer-Tardif et al., 2021). In Europe,
the proximity and distribution of numerous congeneric tree
species increase the possibilities for interspecific hybridization,
a possible facilitator of adaptive introgression (Leroy et al.,
2020). The NNTs hybridization potential is even more so
enhanced by the loose approach of the early legislation and the
ease of movement of plant material on a pan-European level
(Pötzelsberger et al., 2020b). Thus, unpredictable outcomes are
a reality in European forestry and their impact cannot be taken
lightly.

With this information and experiences in mind, regarding
the pan-European region, the threefold aim of this study is:

(i) To provide an overview of the current occurrence of
NNTs on a country-specific basis in terms of diversity and
assisted migration potential, and the possible factors that
have led to it;

(ii) To identify the knowledge gaps focusing on those NNTs
that are less-common in terms of, both, occurrence and
research efforts (less/minor case studies), which may hold

potential for ecosystem and socio-economic services, and
climate change mitigation;

(iii) To analyze all NNTs noted with the questionnaire from the
point of view of hybridization with native species, in terms
of risks and/or opportunities.

Analyzing non-native tree species in
Europe through a mixed approach: The
rationale behind

To achieve these aims, we took advantage of the network
built within the COST Action “Pan-European Network for
Climate Adaptive Forest Restoration and Reforestation” (PEN-
CAFoRR, CA19128, 2020–2024) which contributes to research
on climate-adapted forest restoration and reforestation.
Considering the complexity of the issue and the potential to
involve numerous experts from academia and practice, we
adopted a mixed approach in terms of data collection, analysis,
and interpretation, integrating the use of a country-based
questionnaire and already existing datasets. In particular, the
26 questionnaire contributors, who represented 20 European
countries, consensually agreed that peer-reviewed publications
regarding NNTs would provide limited information, which
can, to a certain extent, be surpassed by the inclusion of grey
literature. While numerous definitions of grey literature exist
(Mahood et al., 2014), we defined it as works that have not been
peer-reviewed (e.g., various types of scientific reports, non-
ISI papers, national reports, theses, conference proceedings,
conference abstracts, posters, conference presentations,
newspaper articles, unpublished work, books, literature reviews,
and personal communications of an expert in academia and/or
practice), and/or are written in a language other than English.
The inclusion of grey literature is often questioned due to the
validity and the quality of the reported data, but when used
alongside peer-reviewed literature, it can contribute to more
balanced and thorough information (Mahood et al., 2014) as
long as experts have been involved in writing (Sandvik et al.,
2013). Additionally, the size and scope of the work in a scientific
publication format are often limited, and only a part of the
results that are deemed significant in the context of the study
are published (Andivia et al., 2019). In the case of NNTs, a
bias is possible both in a positive context, e.g., reporting NNTs
that grow significantly better than native species, and in a
negative context, e.g., NNTs that have harmed local ecosystems.
In extensive international literature review studies, this bias is
expected to be larger, as the information comes from numerous
countries whose language as well as peer-reviewed publication
culture greatly varies. Considering that modern desktop-based
studies can uncover only so much information that has been
digitalized, further joint efforts to systematically reveal and
provide access to previous research efforts are much needed.
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In addition to this, we also noted that mapping tree species
distribution in Europe has been the primary focus of several
previous pan-European projects and we included two in the
scope of our study: (i) the EUFORGEN database, established
and coordinated by experts, allows for a distinction of the
native ranges of distribution of tree species in Europe,1 and (ii)
the recent EU-Forest dataset that provides harmonized data
regarding the tree occurrence of both native and NNTs in EU
countries based on NFI, the Forest Focus and Biosoil databases
(Mauri et al., 2017).

This manuscript summarized the outcomes of this mixed
approach in service of the earlier defined aims as a way to
illustrate its potential and call the readers to supplement and
use our questionnaire, allowing us to build a comprehensive
future pan-European database of NNTs (Questionnaire_PEN-
CAFoRR_WG2D6).

Methodology and data collection

The questionnaire: Gathering
country-based knowledge on
non-native tree species

We constructed a questionnaire where country entries
report the presence of NNTs and, when information is available,
their period of introduction, distribution, use and interest
in forestry, ecological risks, level of knowledge regarding the
ecological risks, the genetic benefits or risks, the legal status,
and the level of scientific knowledge (Figure 1). Additionally,
details regarding the information origin of the entries (i.e., the
type of gray literature used and its original language) were
asked from each contributor (Figure 1 and Supplementary
material 4). The questionnaire was distributed across 20 out
of the 44 European countries of the involved co-authors
participating in the WG2-D6 activity, covering 34% of the
total European area and representing the four pre-dominant
climatic regions (Northern, Central Western, Central Eastern,
and Southern Europe), as differentiated by Härkönen et al.
(2019). The terminology and the structure of the questionnaire
were determined and defined over a series of virtual meetings
between December 2020 and January 2021, before opening
the questionnaire for the contributors who were able to make
additions and changes in the period between January 2021
and October 2021. The contributors were reviewing literature
regarding NNTs and pre-selected keywords (all defined in the
section “Glossary” provided at the end of this paper). However,
we acknowledge that our coverage in terms of countries and
species is far from being complete, limited both by the time for
voluntary contributions and the accessibility of grey literature.

1 http://www.euforgen.org/

Therefore, the questionnaire remains open to access, and
further entries and distribution will allow the construction of
a reference database of European NNTs (Questionnaire_PEN-
CAFoRR_WG2D6).

EUFORGEN and EU-forest datasets:
Analysis of non-native tree species
distribution

We extracted the list of species from both EUFORGEN and
EU-Forest datasets with their distribution data. We consider
that EUFORGEN provides data regarding the distribution of
native tree species in Europe, while the EU-Forest dataset
provides data regarding the overall (native and NNTs)
distribution in the EU. We, therefore, used overlaps and
differences between the two datasets for the construction of
distribution maps regarding the number of native species,
the number of all tree species, and the percentage gain in
species diversity due to NNTs introduction. It must be noted
that these data were limited to the EU countries. A detailed
list of the species noted in both databases is provided as
Supplementary material 6.

Review outcomes on non-native
tree species diversity, assisted
migration, less common species,
and hybridization

The impact non-native tree species
have on tree species diversity in
European countries

The EUFORGEN and EU-Forest datasets analysis resulted
in distribution maps of native tree species (Figure 2A) and
all–native and non-native–tree species (Figure 2B) along with
the diversity percentage gain due to the introduction of
NNTs (Figure 2C). These maps illustrated the current state
of knowledge regarding species diversity and directed us to
investigate the possible factors that have contributed to it.
The summarized output of our questionnaire has provided
additional insight in terms of the differences between the four
European regions (Figure 3) regarding the use in forestry
(Figure 3B) and the invasiveness potential (Figure 3C) of NNTs.
These results indicate to five countries (Ireland, UK, Denmark,
Netherlands, and Hungary) that appeared as most “inclusive”
for NNTs, i.e., countries that have had the highest gain in terms
of species diversity due to the introduction of NNTs (Figure 2C).
These countries that exhibited a larger NNTs distribution and
variety, mostly coincide with the countries characterized by
low levels of restriction regarding the introduction of NNTs
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FIGURE 1

Summary of the WG2-D6 questionnaire structure and literature depository.

(Pötzelsberger et al., 2020b). For the case of the UK, our
questionnaire output note only NNTs conifers (Supplementary
material 1). In UK, intensive forest restoration programs
that began in the early 20th century initially focused on
timber production with the use of NNTs conifers (e.g., Picea
sitchensis, Picea abies, Pseudotsuga menziesii, Larix kaempferi,
Larix decidua, Pinus contorta, Pinus nigra ssp. laricio). These
programs later shifted toward a multipurpose forestry approach
and prioritized broadleaved species in attempts to conserve the
native species and/or select new, non-native ones (Willoughby
et al., 2007; Harmer et al., 2015). However, the lack of
information revealed by the questionnaire raises the question
if they have been monitored and researched enough. In the
case of Denmark, the 19th-century afforestation efforts set the
tone for a country open to NNTs species, but the selection
largely depended on the country’s current goals and the
particularities of the governance i.e., public and subsidized
private afforestation (private landowners were also subsidized
to participate in these afforestation efforts) (Madsen et al., 2005;
Stanturf et al., 2018). As the quasi-entirely cleared landscapes
and the heavily degraded soils (heathlands) were impossible
to afforest with native species, more tolerant NNTs conifer
species, such as Abies alba, Abies grandis, Abies nordmanniana,
Abies procera, Larix decidua, Picea abies, Picea sitchensis, Pinus
contorta, Pseudotsuga menziesii, were introduced. The use of
these species, provision of timber and firewood, is considered
a general priority in the northern countries included in our
sampling efforts (Figure 3B). Yet, the species were marked
as restricted in the aforementioned countries, in the sense

that their use and occurrence are monitored and regulated,
rather than free and sporadic (Supplementary material 1).
The reason for these restrictions could be due to the fact
that they have been intensively used as seed sources and for
nursery production, but also due to a general tendency to be
used as monocultures. Hungary is an interesting case with
a relatively large contribution of NNTs to the total number
of species diversity (Figure 2C) despite the strict legislation
that limits the use of NNTs in the country (Pötzelsberger
et al., 2020b). Our questionnaire also noted the occurrence of
species as Acer negundo, Ailanthus altissima, Amorpha fruticosa,
Elaeagnus angustifolia, Fraxinus pennsylvanica, Prunus serotina,
and Robinia pseudoacacia but also restrictions in terms of their
use (Supplementary material 1). This disharmony between the
identified distribution and the legal restrictions supported our
assumptions regarding the lack of updated and reliable on-field
information which in the case of the invasive NNTs can be an
issue for their sustainable uses. Figure 2 indicates that countries
in southern Europe exhibit lower tendencies toward NNTs
introduction. Additionally, the more restrictive legislation for
the region noted in our questionnaire output (Supplementary
material 1) and previously observed by Pötzelsberger et al.
(2020b) might be due to two factors. First is the consideration
of the Mediterranean basin as a hot spot for plant diversity
(Myers et al., 2000), with forest genetic resources of high value
and drought tolerance (Ducci, 2015; Médail et al., 2019) and
a long history of the anthropogenic influence that has likely
promoted tree species diversity. Thus, the native species have
fulfilled various needs such as seed source, wood production,
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urban forestry, etc. However, the socio-economic changes of
the last century have led to intensive forestland abandonment,
non-sustainable and lack of management, and a lack of interest
in the development of climate-smart forest ecosystems (Palahi
et al., 2008; Fernandes et al., 2019; Forzieri et al., 2021). The
reported NNTs in southern Europe were selected mainly for
afforestation/reforestation purposes, soil recultivation, and the
non-timber products (Figure 3). For example, in Italy, Portugal,
and Spain, Eucalyptus spp. and Pinus spp. were selected due to
their potential economic contribution in rural areas (Catry et al.,
2015; Pra et al., 2019) and even more so for soil stabilization, fire
mitigation, and non-wood products (Palahi et al., 2008). These
rapid and intensive introductions, combined with the favorable
climatic conditions, have led to some negative outcomes with
NNTs, as in the case of Robinia pseudoacacia (Vítková et al.,
2020) and Ailanthus altissima (Montecchiari et al., 2020).

Native to southern Europe, introduced
to northern Europe: Potential for
assisted migration

The analysis of the current NNTs occurrence highlighted
a particular group of species: “native to some parts of Europe
- generally to southern Europe, that have been introduced to
other parts of Europe - generally to northern Europe.” The
area occupancy of these species in the EU countries for which
data was available is presented in Figure 4 and includes nine
broadleaved (Acer platanoides, Acer pseudoplatanus, Aesculus
hippocastanum, Alnus incana, Carpinus orientalis, Castanea
sativa, Celtis australis, Fagus sylvatica, and Populus alba)
and ten coniferous species (Abies nordmanniana, Cedrus
atlantica, Cupressus sempervirens, Larix decidua, Picea abies,
Picea omorika, Pinus mugo, Pinus nigra, Pinus pinaster, and
Pinus sylvestris). As previously mentioned, these species are
potential candidates for assisted migration which is defined
as a deliberate species and population movement that serves
to facilitate the natural range expansion. To highlight the
current literature availability across the European countries,
we also marked the overlaps with country-specific species
entries from the questionnaire (Figure 4 and Supplementary
material 1). Our findings indicate that (i) numerous species
that are suitable candidates for assisted migration are already
part of the European landscape, and (ii) these species have
been consistently underrepresented in both grey and published
literature. However, we raise caution about the indicative nature
of this figure, since, as previously mentioned, the information
regarding the species occurrence is limited and probably not
completely representative of the current on-field situation, in
addition to the lack of information regarding non-EU countries.

We deem this approach and information useful for
understanding what has contributed to the factors affecting
the occurrence of these species across Europe. For example, in

Slovakia, Pinus nigra has been introduced from southern Europe
and studied as a potential afforestation species in a magnesite
mining air polluted area characterized by a mixture of dust
particles (MgO and MgCO3) and gaseous compounds (SO2

and NOx) due to which soil is strongly alkaline (pH 8.8) with
Cr, Mn, and Mg contents that exceed the toxicity limit, and
reactive caustic magnesite which is aggressive in direct contact
with crop moisture (Tucekova, 2000; Fazekašová et al., 2017;
Fazekaš et al., 2018). In Latvia, this type of introduction has been
done for several species. Populus alba along with other species of
the Populus genus are widely distributed on abandoned former
industrial areas for fast greening and along roadsides and forest
edges (Jansons et al., 2017). Larches were also introduced for
wood production and have shown high productivity, however
inadequate management and cultivation have been limiting
factors in terms of the successful establishment (Jansons et al.,
2015; Jansone et al., 2018). Generally, the limited knowledge
about the distribution of the majority of the south-European
native species and their invasiveness potential put in question
the impact they would have on the existing forests (Vítková et al.,
2020). This uncovered a knowledge gap in the context of NNTs
which has implications for their selection in future research and
practical efforts.

Filling in the gaps: Shedding light on
less common species by integrating
peer-review and gray literature

The results from our questionnaire provided a total of
120 different tree species, characterized as non-native in at
least one of the contributing countries (Table 1). The country-
level approach and analysis of species occurrence allowed for
identifying three NNTs categories based on their recurrence
in the questionnaire output: “most common”—present in
11–19 countries (total of 5 species), “common”—present in
2–10 countries (total of 62 species), and “less common”—
present in one country (total of 53 species) (Table 1). Indeed,
most studies have focused on the NNTs identified as more
common also by Krumm and Vitkova (2016). In our results,
we identified as “most common”: Pseudotsuga menziesii,
Quercus rubra, Robinia pseudoacacia, Ailanthus altissima, and
Acer negundo. The rationale for the strong focus on these
species is either due to their value in wood production and
forestry (P. menziesii) or their invasiveness (A. altissima).
Once introduced from North America, the favorable climatic
conditions across Europe enabled P. menziesii to grow fast
and form high wood quality in comparison to the native
species (Bastien et al., 2013; Castaldi et al., 2020). P. menziesii
was reported by 19 of the 20 participating countries in the
questionnaire, noting its wide occurrence across climatic
zones in Europe, adaptation for wood production and
afforestation/reforestation purposes, and of interest for various
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FIGURE 2

Species diversity distribution maps. (A) Map showing the number of native tree species across Europe. (B) Map showing the total number of
native and NNTs across Europe. (C) Contribution of non-native species to the total number of tree species diversity in Europe (Percentage gain
in species diversity). Tree species distribution data are taken from EUFORGEN and EU Forest databases.

research efforts (Supplementary material 3). Interestingly,
from our questionnaire outputs, the legal status regarding the
other four most commonly reported NNTs varies between
European countries from “banned” to “no restrictions”
(Supplementary material 1). In literature, these species have
been denoted as invasive, or at least undesirable, due to
their ecological characteristics (high regeneration potential
and productivity, resistance to abiotic and biotic stressors)
and negative impacts on native ecosystems (Langmaier and
Lapin, 2020). In our questionnaire outputs, the reported
uses and interests of these species vary across countries
(Supplementary material 1). Both Q. rubra and A. negundo
were initially introduced and are strongly used in urban forestry
(Supplementary material 1). For Q. rubra, a species already
naturalized in European forests, suitable management may
provide the desired services while minimizing the potential
risks (Jagodziński et al., 2018). For A. negundo, the strong
colonization potential in riparian areas (Sikorska et al., 2019)
complicates its control, hence making it less suitable to be
considered a useful NNT. R. pseudoacacia and A. altissima are
NNTs with high clonality, genotype plasticity, and adaptive
potential, characteristics that were initially desired and of use

for biomass production but today disliked due to the negative
impact on the native species (Alpert et al., 2000; Bouteiller et al.,
2019). This rationale explains the high frequency of the species
in our questionnaire outputs as well as the wide range of uses
in forestry (Supplementary material 1). However, the status
of R. pseudoacacia, beneficial or invasive, is widely debated as
the species is still purposefully cultivated across Europe and
is part of the cultural landscape, especially in Central Europe
(Nicolescu et al., 2020; Vítková et al., 2020). The impact of
R. pseudoacacia, both in terms of benefits and risks, varies a lot
depending on the local context (Cierjacks et al., 2013; Vítková
et al., 2017; Bartz and Kowarik, 2019; Tölgyesi et al., 2020;
Klisz et al., 2021).

The above-reported knowledge is limited or not available in
the case of the other NNTs listed in the questionnaire, which
we grouped as “common” and “less common” depending on
their occurrence (Table 1). These indicative results allowed
us to underscore some species of potential interest due to
their promising aspects in terms of adaptation to climate
change and provision of various ecosystem services or potential
risks. Moreover, we aim to emphasize the knowledge gaps,
both regarding the species characteristics and occurrence in
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FIGURE 3

Scope of study and summary of results from the questionnaire. (A) The participating countries in the WG2-D6, divided into climatic zones
according to Härkönen et al. (2019). (B) Summarized relative frequency (%) of reported keywords regarding use in forestry of NNTs.
(C) Summarized relative frequency (%) of reported keywords regarding invasive potential of NNTs. The reference definitions for all keywords are
provided in the section “Glossary.”

FIGURE 4

Difference in species status, native, and non-native in Europe. The log area of species native to some regions in Europe but introduced outside
their natural range in other European countries. Tree species occurrence data are taken from EUFORGEN and EU-Forest databases. The area is
calculated as the number of 1 km2 grid cells, where the species occurrences have been reported. Stars indicate species in given countries that
were also reported in the questionnaire.

Europe. From the listed common species, for Central Europe,
of interest could be familiar non-invasive NNTs such as the
Turkish hazelnut—Corylus colurna, which is well adapted to
the Mediterranean and the continental climate (Šeho et al.,
2019) and Sequoia sempervirens due to its high adaptive

potential (Breidenbach et al., 2020). Less promising in terms of
productivity, but able to cope with harsh soil conditions and a
warmer climate is Platanus × hispanica, a species often used
in urban forestry (Willoughby et al., 2007) that might be worth
exploring in various contexts. Caution needs to be raised toward
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TABLE 1 Species categorization based on recurrences in the
questionnaire output.1

Species category
(number of
recurrences)2

Species (alphabetical order with the
number of recurrences)

“most common”
(11–19)

Acer negundo (11), Ailanthus altissima (12),
Quercus rubra (14), Robinia pseudoacacia (14),
Pseudotsuga menziesii (19);

“common”
(2–10)

Abies alba (3), Abies cephalonica (2), Abies concolor
(2), Abies grandis (8), Abies nordmanniana (4),
Abies procera (3), Acacia dealbata (3), Acacia
melanoxylon (2), Acer pseudoplatanus (2), Acer
saccharinum (3), Aesculus hippocastanum (4),
Amorpha fruticosa (2), Carya ovata (2), Castanea
sativa (5), Cedrus atlantica (6), Cedrus libani (3),
Chamaecyparis lawsoniana (4), Corylus colurna (3),
Cryptomeria japonica (2), Cupressus arizonica (2),
Eucalyptus camaldulensis (2), Eucalyptus globulus
(3), Fagus sylvatica subsp. orientalis (3), Fraxinus
americana (2), Fraxinus pennsylvanica (5), Gleditsia
triacanthos (4), Juglans cinerea (2), Juglans nigra
(9), Juglans regia (4), Larix decidua (9), Larix
kaempferi (8), Larix sibirica (2), Larix X Eurolepis
(3), Liriodendron tulipifera (3), Paulownia elongate
(2), Paulownia tomentosa (4), Picea abies (4), Picea
omorika (2), Picea pungens (3), Picea sitchensis (8),
Pinus banksiana (2), Pinus contorta (9), Pinus nigra
(6), Pinus peuce (3), Pinus ponderosa (2), Pinus
radiata (3), Pinus strobus (8), Platanus X hispanica
(2), Populus balsamifera (2), Populus deltoides (4),
Populus trichocarpa (3), Populus X canadensis (5),
Populus X euramericana (3), Populus X wettsteinii
(2), Prunus serotina (6), Quercus cerris (2), Rhus
typhina (2), Sequoia sempervirens (2),
Sequoiadendron giganteum (3), Thuja plicata (6),
Tsuga heterophylla (2), Ulmus pumila (4);

“less common”
(1)

Abies balsamea, Abies bornmuelleriana, Abies
borsii-regis, Abies homolepis, Abies pinsapo, Acacia
longifolia, Acer rubrum, Alnus rubra, Araucaria
araucana, Betula grossa, Betula maximowicziana,
Broussonetia papyrifera, Calocedrus decurrens,
Carya cordiformis, Cedrus deodara, Celtis
occidentalis, Ceratonia siliqua, Chamaecyparis
obtuse, Chamaecyparis pisifera, Elaeagnus
angustifolia, Eucalyptus spp., Fagus sylvatica,
Juglans ailanthifolia Juglans mandshurica, Juniperus
virginiana, Koelreuteria paniculata, Larix gmelinii
var. japonica, Larix rossica, Larix X marschlinsii,
Leucaena leucocephala, Ligustrum lucidum,
Maclura aurantiaca, Metasequoia glyptostroboides,
Pinus brutia, Pinus halepensis, Pinus jeffreyi, Pinus
nigra subsp. Laricio3 , Pinus pinaster, Pinus pinea,
Pinus rigida, Pinus taeda, Populus alba, Populus
nigra, Prunus avium, Pseudotsuga macrocarpa,
Salix viminalis, Sorbus domestica, Taxodium
distichum, Thuja occidentalis, Platycladus orientalis,
Tilia tomentosa, Tsuga canadensis.

1Supplementary material 3 provides the complete overview while Supplementary
material 1 provides a shortened version of the questionnaire results.
2The categories are determined by the range of recurrence of the species in
Supplementary materials 1–3.
3Originally reported by the contributor as Pinus nigra var. Corsicana and present as such
in Supplementary materials 1–3.

NNTs that have exhibited some invasive behavior, reported
in the questionnaire entries (Supplementary material 3)
and further supported by literature. For example, Fraxinus
pennsylvanica has been mentioned as a threat in the Central
European floodplain forests (Schmiedel et al., 2013; Drescher
and Prots, 2016). The Fabaceae family contains numerous
invasive woody species (Fernandez et al., 2017). For instance,
Gleditsia triacanthos, native to North America, has shown
invasive behavior on several continents, including some Central
and Eastern European countries (Fernandez et al., 2017),
yet little is known about the distribution scale and possible
management. Populus spp. and Paulownia spp. were introduced
and extensively used for short-rotation forestry, biomass, and
soil recultivation, and although reported as NNTs they are
considered naturalized in some countries. However, non-native
poplars are a threat to the native Populus nigra (Michalak et al.,
2015). Concerns have also been raised regarding the invasive
tendencies of Paulownia tomentosa, especially under climate
changes (Essl, 2007) in addition to the species being recently
pinpointed as a vector of pathogens as Phytophthora species
(Aloi et al., 2021).

The NNTs reported in only one country (Table 1) were
regarded as less common. Nonetheless, we cannot assume they
are limited to these countries considering the logistic effort
required to identify and provide details for these species, i.e., the
participating countries, the time limitations, and information
available in terms of the possibility to review literature. Thus,
we used this data to emphasize the knowledge gaps and limited
data available regarding numerous unreported NNTs in neither
the EUFORGEN nor the EU-Forest database (Figure 5 and
Supplementary material 6). These outputs are meant to serve
as a supplementary addition to the current body of literature
and even more so as an incentive for future research and
management efforts regarding NNTs in European forests.

Think twice about non-native tree
species with a native relative—the
question of hybridization

The analysis of the limited data regarding hybridization
obtained from our questionnaire entries, together with the
review of the literature regarding the species hybridization
potential in forestry, and the information from the EUFORGEN
dataset resulted in a table summary of tree genera from which
both native and NNTs are present in Europe (Supplementary
material 2). The information presented in this table indicates
towards several species of significant importance in European
forestry.

From the broadleaved species, we explored the hybridization
potential for nine genera: Acer, Alnus, Corylus, Juglans,
Populus, Prunus, Quercus, Tillia, and Ulmus (Supplementary
material 2). In the Alnus genus, interspecific hybrids have
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FIGURE 5

(A) Venn diagram of species overlaps and differences between EUFORGEN, EU-Forest and WG2-D6 questionnaire. (B) The number of “less
common” species reported by only one country (countries with symbols) in the WG2-D6 questionnaire. Countries colored in blue are the ones
that participated in the questionnaire.

been observed and in the context of species of interest to
Europe, Alnus incana × Alnus glutinosa hybrids have been
found more abundant at the northern limit of their range,
possibly due to climate change-induced northward colonization
(Banaev and Bažant, 2007). A. cordata, a species native to
Corsica and southern Italy, has been observed to naturally
hybridize with A. glutinosa, but the low occurrence frequency
of A. cordata indicates low risk for its genetic pollution
(Villani et al., 2021). Our questionnaire output indicate that
A. rubra, a species used for various purposes, but reported
only in Sweden (Supplementary material 2) raises a question
regarding the presence and interaction between different Alnus
spp. across Europe that has not been detected. In the Corylus
genus, many interspecific hybrid combinations have been
noted (Erdogan and Mehlenbacher, 2000), and considering the
previously mentioned interest for the species in Europe, further
consideration and monitoring during on-field introductions are
needed. For species of high importance for forestry such as
Juglans (Supplementary material 2), undertaken studies have
revealed only a low frequency of hybrids occurrence even under

favorable conditions, as J. nigra and J. regia are species that
remain reproductively isolated (Pollegioni et al., 2013). In the
poplar genus, both anthropogenic and natural hybridization
is far from a novelty and has contributed to a detectable
introgression of the wild population due to the possibility of
spontaneous mating (Broeck et al., 2005; Tinschert et al., 2020).
The native Populus nigra is considered one of the rarest native
species in Central Europe, naturally present in the riparian
forests. Despite exhibiting low levels of introgression, it seems to
be dominated by planted poplars in its natural occurrence range
(Supplementary material 2). Here, management approaches
that consider the hydro-geomorphological characteristics of
the site might be a tool for sustaining P. nigra regeneration
(Tinschert et al., 2020).

Regarding the Prunus genus, hybridizations studies have
been focused on optimizing the fruits used as food (e.g.,
Fresnedo-Ramírez et al., 2011; Ganopoulos et al., 2018), rather
than in the forestry context, despite the reported invasive
potential of P. serotina. In oaks, the hybridization with Q. robur
has significantly contributed to the divergence of locally adapted
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Q. petraea (Leroy et al., 2020). The degree of hybridization
between the two species is variable, as noted by Gerber et al.
(2014) in a pan-European study, with a higher degree of
hybridization in the two northernmost populations sampled,
in this case, UK and Denmark, possibly because these regions
were more recently colonized. However, data regarding the
hybridization potential of the widely used and semi-invasive
species in Europe, such as Q. rubra, is lacking. In its native
range in North America, Q. rubra can potentially hybridize with
other native Quercus species (Jensen et al., 1993), but species
from its section are absent from Europe, so hybridization is less
likely. Interesting is the case of Tilia tomentosa, which is native
to south eastern Europe and exhibits a promising perspective
for distribution in central Europe as a thermophilous and
moderately drought-tolerant species (Heinrichs et al., 2021).
Natural inter-specific hybrids do exist within the genus Tilia
(e.g., T. cordata and T. platyphyllos) and as they are characterized
by a higher drought tolerance (Radoglou et al., 2009), they can
be of further interest in the context of climate change. While in
North America, negative outcome from hybridization with the
native species is not expected from Ulmus pumila (Zalapa et al.,
2010), in Italy this type of hybridization has already taken place
with the native U. minor (Brunet et al., 2013). This indicates
caution when it comes to the use of the species and underlines
the need for close monitoring.

Among the coniferous species, the presence of both native
and non-native trees was explored for five genera: Abies,
Cupressus, Larix, Picea, and Pinus (Supplementary material 2).
For Abies, the high genetic compatibility and the success of
field tests allowed for recommendations for hybrids selection
(Krajmerová et al., 2016) and this is especially the case for the
Mediterranean firs, which could be interesting to explore with
pan-European efforts focused on the adaptive potential of fir
hybrids (Kormut’ák et al., 2013). In the Cupressus genus, while
other species have exhibited some scale of hybridization (Little,
2004; Gallis et al., 2007), the literature gave no information
regarding the possibility of C. sempervirens/C. arizonica crosses.
Larix might be considered the coniferous equivalent of poplar,
whose hybrids have been preferred over the native L. decidua
and for which coordinated efforts from IUFRO have allowed
for provenance trials and larger research efforts (Pâques et al.,
2013). For various Picea species in different parts of the world,
the question of hybridization has been raised, e.g., P. abies
and P. obovata in northern Eurasia (Krutovskii and Bergmann,
1995; Tsuda et al., 2016), P. omorika and P. abies in south
western Europe (Siljak-Yakovlev et al., 2002), P. pungens and P.
engelmannii, and P. sitchensis and P. glauca in North America
(Daubenmire, 1972; Silim et al., 2001). Hybridization between
native European Pinus species has also been observed, e.g.,
between P. sylvestris and P. mugo (Kormut’ák et al., 2005).

The questionnaire output along with the EUFORGEN
data illustrated the varying degrees of hybridization
success under controlled conditions and/or in nature

(Supplementary material 2). The above-noted gaps in
knowledge regarding the NNTs distribution have a direct
impact on the knowledge regarding the hybridization outcomes,
both positive and negative.

Conclusion: Climate change
provides both opportunities and
limitations for non-native tree
species in Europe

The notable presence and different roles that NNTs have
in European forestry make it of high importance to establish
a sound backbone of knowledge regarding their characteristics
and interplay with the native flora. This information needs
to consider not only their distribution but also the pan-
European experience of as many NNTs as possible and take into
consideration both the potential benefits and risks. The outputs
from our questionnaire, accompanied and integrated with the
datasets analysis and review of literature, highlighted how
numerous under-studied NNTs, not necessarily less distributed,
hold different potential for the provision of ecosystem and
socio-economic services, and climate change mitigation. The
currently available, limited, and likely biased, knowledge needs
to be addressed as appropriate species selection is crucial for the
establishment of adaptable and resilient forests. Thus, large joint
efforts that combine homogenized pan-European methodology
for gathering information and well-established field experiment
would enable a more informed decision-making process,
valuable for researchers, practitioners, and policymakers.

Glossary

NNTs (Non-native tree species)—species transported into a
region by humans across a barrier that has apparently prevented
natural dispersal so far (Alpert et al., 2000). We consider NNTs
as a synonym to exotic, non-indigenous, and introduced tree
species.

Europe—Data mining context: European territory covered
by the participating countries; Data interpretation context
(especially the genetic risks): territory between the Atlantic and
the Ural Mountains, including the European part of Turkey.

Seed source—The reported tree species is used as a seed
source (mother tree) for further production of new individuals.

Nursery production—The reported tree species are used in
nurseries for the production of new individuals.

Afforestation/reforestation—The reported tree species are
used for afforestation and reforestation purposes. Afforestation
refers to converting long-time non-forested land into forest.
Reforestation refers to replanting trees on more recently
deforested land (Definitions from European Climate Adaptation
Platform Climate-ADAPT).
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Wood production—The reported tree species are used for
wood production and timber.

Bioenergy—The reported tree species are used as biomass
for bioenergy production.

Non-timber products—The reported tree species are
used for non-timber products further used for food or
medicinal purposes.

Soil recultivation—The reported tree species are used for the
restoration of the productivity of the soil and improvement of its
structure and quality as desired properties.

Urban forestry—The reported tree species are used as part
of the urban greenery. The presence of single individuals in
botanical gardens/arboretums was not considered.

Reproductive potential—The relative capacity of a species to
reproduce itself under optimum conditions.

Colonization potential—The capacity for the spread and
development of an organism in a new area or habitat.

Eradication potential—The potential of the species in
question to be eradicated from an area (in this context,
determined by the country’s territory).

Resistance/adaptability—The potential of the species to
resist unfavorable eco-climatic conditions and successfully adapt
to ensure its establishment and survival.

The terms have been defined/adopted for the study and the
establishment of the questionnaire by the authors.
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Jagodziński, A. M., Dyderski, M. K., Horodecki, P., and Rawlik, K. (2018).
Limited dispersal prevents Quercus rubra invasion in a 14-species common garden
experiment. Divers. Distrib. 24, 403–414. doi: 10.1111/ddi.12691

Jansone, B., Skrastins, K., Kapostins, R., Rācenis, E., and Jansone, L. (2018).
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