75 research outputs found

    2016-2017 Philharmonia No. 3

    Get PDF
    2016 Concerto Competition Winners Concert Concert Date & Time: November 12, 2016 at 7:30 PM | November 13, 2016 at 4:00 PM Program Variations on a Rococo Theme, op. 33 / Pyotr Ilyich Tchaikovsky Piano Concerto No. 1 in D minor, op. 15 / Johannes Brahms Première Rhapsodie for Clarinet / Claude Debussy Violin Concerto in D major, op. 35 / Pyotr Ilyich Tchaikovskyhttps://spiral.lynn.edu/conservatory_philharmonia/1002/thumbnail.jp

    Traumatic injury clinical trial evaluating tranexamic acid in children (TIC-TOC): study protocol for a pilot randomized controlled trial.

    Get PDF
    BACKGROUND: Trauma is the leading cause of morbidity and mortality in children in the United States. The antifibrinolytic drug tranexamic acid (TXA) improves survival in adults with traumatic hemorrhage, however, the drug has not been evaluated in a clinical trial in severely injured children. We designed the Traumatic Injury Clinical Trial Evaluating Tranexamic Acid in Children (TIC-TOC) trial to evaluate the feasibility of conducting a confirmatory clinical trial that evaluates the effects of TXA in children with severe trauma and hemorrhagic injuries. METHODS: Children with severe trauma and evidence of hemorrhagic torso or brain injuries will be randomized to one of three arms: (1) TXA dose A (15 mg/kg bolus dose over 20 min, followed by 2 mg/kg/hr infusion over 8 h), (2) TXA dose B (30 mg/kg bolus dose over 20 min, followed by 4 mg/kg/hr infusion over 8 h), or (3) placebo. We will use permuted-block randomization by injury type: hemorrhagic brain injury, hemorrhagic torso injury, and combined hemorrhagic brain and torso injury. The trial will be conducted at four pediatric Level I trauma centers. We will collect the following outcome measures: global functioning as measured by the Pediatric Quality of Life (PedsQL) and Pediatric Glasgow Outcome Scale Extended (GOS-E Peds), working memory (digit span test), total amount of blood products transfused in the initial 48 h, intracranial hemorrhage progression at 24 h, coagulation biomarkers, and adverse events (specifically thromboembolic events and seizures). DISCUSSION: This multicenter trial will provide important preliminary data and assess the feasibility of conducting a confirmatory clinical trial that evaluates the benefits of TXA in children with severe trauma and hemorrhagic injuries to the torso and/or brain. TRIAL REGISTRATION: ClinicalTrials.gov registration number: NCT02840097 . Registered on 14 July 2016

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Multiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula : a regional and decadal investigation

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 98-99 (2012): 26-39, doi:10.1016/j.jmarsys.2012.03.003.We present results on phytoplankton and bacterial production and related hydrographic properties collected on nine annual summer cruises along the western Antarctic Peninsula. This region is strongly influenced by interannual variations in the duration and extent of sea ice cover, necessitating a decade-scale study. Our study area transitions from a nearshore region influenced by summer runoff from glaciers to an offshore, slope region dominated by the Antarctic Circumpolar Current. The summer bacterial assemblage is the product of seasonal warming and freshening following spring sea ice retreat and the plankton succession occurring in that evolving water mass. Bacterial production rates averaged 20 mgC m-2 d-1 and were a low (5%) fraction of the primary production (PP). There was significant variation in BP between regions and years, reflecting the variability in sea ice, Chlorophyll and PP. Leucine incorporation was significantly correlated (r2 ranging 0.2-0.7, p<0.001) with both chlorophyll and PP across depths, regions and years indicating strong phytoplankton-bacteria coupling. Relationships with temperature were variable, including positive, negative and insignificant relationships (r2 <0.2 for regressions with p<0.05). Bacterial production is regulated indirectly by variations in sea ice cover within regions and over years, setting the levels of phytoplankton biomass accumulation and PP rates; these in turn fuel BP, to which PP is coupled via direct release from phytoplankton or other less direct pathways.This research was supported by NSF Grants OPP-0217282 and 0823101 from the Antarctic Organisms and Ecosystems Program to HWD

    Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans

    Get PDF
    Polar oceans are particularly vulnerable to ocean acidification due to their low temperatures and reduced buffering capacity, and are expected to experience extensive low pH conditions and reduced carbonate mineral saturations states (Ω) in the near future. However, the impact of anthropogenic CO2 on pH and Ω will vary regionally between and across the Arctic and Southern Oceans. Here we investigate the carbonate chemistry in the Atlantic sector of two polar oceans, the Nordic Seas and Barents Sea in the Arctic Ocean, and the Scotia and Weddell Seas in the Southern Ocean, to determine the physical and biogeochemical processes that control surface pH and Ω. High-resolution observations showed large gradients in surface pH (0.10–0.30) and aragonite saturation state (Ωar) (0.2–1.0) over small spatial scales, and these were particularly strong in sea-ice covered areas (up to 0.45 in pH and 2.0 in Ωar). In the Arctic, sea-ice melt facilitated bloom initiation in light-limited and iron replete (dFe>0.2 nM) regions, such as the Fram Strait, resulting in high pH (8.45) and Ωar (3.0) along the sea-ice edge. In contrast, accumulation of dissolved inorganic carbon derived from organic carbon mineralisation under the ice resulted in low pH (8.05) and Ωar (1.1) in areas where thick ice persisted. In the Southern Ocean, sea-ice retreat resulted in bloom formation only where terrestrial inputs supplied sufficient iron (dFe>0.2 nM), such as in the vicinity of the South Sandwich Islands where enhanced pH (8.3) and Ωar (2.3) were primarily due to biological production. In contrast, in the adjacent Weddell Sea, weak biological uptake of CO2 due to low iron concentrations (dFe<0.2 nM) resulted in low pH (8.1) and Ωar (1.6). The large spatial variability in both polar oceans highlights the need for spatially resolved surface data of carbonate chemistry variables but also nutrients (including iron) in order to accurately elucidate the large gradients experienced by marine organisms and to understand their response to increased CO2 in the future

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
    corecore