44 research outputs found
Evaluation of Feeding Wet Distillers Grains with Solubles, Dry Distillers Grans with Solubles and Blood Meal to Growing Steers
A two-year study was conducted to determine the effect of feeding different protein sources on the performance of feeder cattle. During year 1 (Y1), 128 steers (506 ± 40 lb) were weighed and randomly allocated to 16 pens in a completely randomized design. Each pen was assigned to one of four treatment diets: 1) 20% soybean meal and corn (SBM); 2) 20% dried distillers grains with solubles (DDGS); 3) 20% wet distillers grains with solubles (WDGS); or 4) 20% blood meal, oil and corn (BM). In Y1, steers were fed a diet that consisted of 74% alfalfa/grass hay, 4% molasses and 2% supplement for the first 28 d and a diet that consisted of 50% alfalfa/grass hay, cracked corn, 4% molasses and 2% supplement for the remaining 56 d. During year 2 (Y2), 160 steers (535 ± 40 lb) were weighed and randomly allotted to 16 pens. Each pen was assigned to one of the four treatment diets used in Y1. The steers received the 50% alfalfa/grass hay based grower diet throughout the entire 57-d trial. Body weight was recorded prior to feeding at the start of the trial and every 28 d for both years. In Y1, ADG, DMI and G:F did not differ due to diet for the first 28 d and over the entire trial period. During the first 28 d of Y2, ADG, DMI and G:F was not affected by treatment; however, cumulative G:F of steers fed BM and WDGS were greater (P \u3c 0.05) than steers fed SBM or DDGS. In conclusion, feeding BM and WDGS during the growing phase resulted in the most efficient gains when steers were started on a higher energy diet. In addition, distillers grains with solubles was an effective alternative to soybean meal in growing diets
Evaluation of Feeding Varying Levels of Wet Distillers Grains with Solubles as Compared to Dry Distilelrs Grains with Solubles to Finishing Steers
A study was conducted to determine the effects of implants and transportation on the metabolic status of feedlot steers. Steers (n = 28) were sorted by body weight, allocated into light or heavy blocks, and randomly assigned to one of two treatments. Treatments included non-implanted controls (CON) and steers implanted with Synovex Plus 70 d prior to harvest (IMP). Jugular blood and muscle biopsy samples (longissimus dorsi (LD) and semimembranosis (SM)) were collected 70 d post-implant, prior to transit. Steers were transported to Schuyler, NE, where blood and biopsy sampling was repeated. After harvest, carcass data were collected and muscle samples were taken from the LD, SM, Psoas Major (PM), and Illiacus (IL) muscles. Implanting increased (P \u3c 0.05) estradiol levels and improved live animal performance. Carcass weight and rib eye area were increased (P \u3c 0.05) in implanted steers. No dark cutters were found in either treatment. Pre-transit insulin/glucagon ratio and muscle glycogen levels did not differ (P \u3e 0.10) between treatments. Non-esterified fatty acid (NEFA) levels were reduced (P \u3c 0.05) in implanted steers pre-transit. Transit increased (P \u3c 0.05) NEFA levels, but had no effect (P \u3e 0.10) on insulin/glucagon ratio or muscle glycogen levels. Implanting did not affect (P \u3e 0.10) insulin/glucagon ratio, NEFA, or LD glycogen levels post-transit. Implanted steers had lower (P \u3c 0.05) glycogen levels in the SM than did non-implanted steers post-transit. Weight block affected (P \u3c 0.05) insulin and insulin/glucagon ratio levels, with steers in the light block having greater levels of each. Muscle pH and objective color (L*, a*, b*) of the LD were not biologically different between treatments. Implanted steers had greater (P \u3c 0.05) glycolytic potential values in the LD, and tended (P \u3c 0.10) to have higher L* values in the PM. Implanting increased (P \u3c 0.05) shear force of the LD. These data indicate that although implants affect bovine metabolism, other factors are necessary to cause a sufficient reduction in muscle glycogen and to produce a dark cutting carcass
Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems
Urban streams can provide amenities to people living in cities, but those benefits are reduced when streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions invest resources to improve the values and services provided by urban streams; however, the conception, development, and implementation of such projects may not include meaningful involvement of community members and other stakeholders. Consequently, project objectives may be misaligned with community desires and needs, and projects may fail to achieve their goals. In February 2020, the 5(th) Symposium on Urbanization and Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating community members into project identification and decision making. The symposium included in-depth discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents, and input from the Austin community. Institutional barriers to community inclusion were identified and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges the present institutional approach to urban stream management and a set of strategies to systematically address these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can help identify appropriate goals for realizing both the ecological and social benefits of stream restoration
Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function
Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC) causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome) for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC), Salmonella, Shigella, Yersinia) utilize a type III secretion system (T3SS) to inject virulence proteins (effectors) into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3), a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-κB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-κB chaperone IκBα NleH1 repressed the transcription of a RPS3/NF-κB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well as an AP-1-dependent reporter. We identified a region of NleH1 (N40-K45) that is at least partially responsible for the inhibitory activity of NleH1 toward RPS3. Deleting nleH1 from E. coli O157:H7 produced a hypervirulent phenotype in a gnotobiotic piglet model of Shiga toxin-producing E. coli infection. We suggest that NleH may disrupt host innate immune responses by binding to a cofactor of host transcriptional complexes
Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems
Este artículo contiene 16 páginas, 2 tablas, 3 figuras.Urban streams can provide amenities to people living in cities, but those benefits are reduced when
streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions
invest resources to improve the values and services provided by urban streams; however, the conception,
development, and implementation of such projects may not include meaningful involvement of community members
and other stakeholders. Consequently, project objectives may be misaligned with community desires and
needs, and projects may fail to achieve their goals. In February 2020, the 5th Symposium on Urbanization and
Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating
community members into project identification and decision making. The symposium included in-depth
discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents,
and input from the Austin community. Institutional barriers to community inclusion were identified
and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities
in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges
the present institutional approach to urban stream management and a set of strategies to systematically address
these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout
the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can
help identify appropriate goals for realizing both the ecological and social benefits of stream restoration.Publication costs were covered by an award from the
Society of Freshwater Science’s Endowed Publication Fund (https://
freshwater-science.org/publications/endowed-publication-fund).Peer reviewe
National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)
Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe
Recommended from our members
National identity predicts public health support during a global pandemic.
Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = -0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics
Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.Peer reviewe
Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa
West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe