88 research outputs found

    The electrochemistry of 5-halocytosines at carbon based electrodes towards epigenetic sensing

    Get PDF
    Epigenetic modifications in DNA are strongly linked to the triggering and development of pathophysiological disorders and cancer diseases. The halogenation of DNA via radical species, particularly the formation of 5-chlorocytosine (ClC), has recently emerged as epigenetic modification. This work deals for the first time with the exploration of the electrochemical behaviour of ClC on different carbon electrodes such as glassy carbon and boron-doped diamond using cyclic voltammetry and square wave voltammetry. When comparing both carbon materials, the use of glassy carbon turned out to be the appropriate in terms of a more well-defined anodic wave and higher sensitivity. The electrochemical oxidation potential of ClC resulted to be linearly dependent on the pH with a maximum current intensity in acetic acid buffer solution under the conditions used. Moreover, a linear response between peak current intensity and ClC concentration was obtained within the range of 200 and 1000 μM with a limit of detection of 200 μM. In order to elucidate the reaction mechanism of the process, the main oxidation products after a preparative electrolysis were detected by HPLC-MS. Simultaneous detection of ClC in the presence of the unmodified cytosine and mixtures containing other nucleic bases such as guanine, adenine and thymine was also addressed. Finally, the effect of the halogen atom (X = F, Cl, Br) located at position C-5 of the cytosine entity upon the electrooxidation process was examined by theoretical calculations, too.I.S.M., N.H.I. and J.I. thank the Ministerio de Economia y Competitividad MINECO, Spain for its financial support by the research projects CTQ2013-48280-C3-3-R and CTQ2016-76231-C2-2-R

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Zno/ag3 po4 and zno–malachite as effective photocatalysts for the removal of enteropathogenic bacteria, dyestuffs, and heavy metals from municipal and industrial wastewater

    No full text
    Different composites based on ZnO/Ag3 PO4 and ZnO–malachite (Cu2 (OH)2 CO3 ) were synthesized in order to determine their effectiveness in the treatment of municipal and industrial wastewaters (mainly polluted by enteropathogenic bacteria, dyes, and heavy metals). The addition of Ag3 PO4 and malachite did not significantly modify the physicochemical properties of ZnO; however, the optical properties of this oxide were modified as a result of its coupling with the modifiers. The modification of ZnO led to an improvement in its effectiveness in the treatment of municipal and industrial wastewater. In general, the amount of malachite or silver phosphate and the effluent to be treated were the determining factors in the effectiveness of the wastewater treatment. The highest degree of elimination of bacteria from municipal wastewater and discoloration of textile staining wastewater were achieved by using ZnO/Ag3 PO4 (5%), but an increase in the phosphate content had a detrimental effect on the treatment. Likewise, the highest Fe and Cu photoreduction from coal mining wastewater was observed by using ZnO–malachite (2.5%) and ZnO/Ag3 PO4 (10%), respectively. Some of the results of this work were presented at the fourth Congreso Colombiano de Procesos Avanzados de Oxidación (4CCPAOx).Gobernación de Boyacá 789-2020Universidad Pedagógica y Tecnológica de Colombia Projects SGI 3007, 2644, 280

    Design of an algorithm for the diagnostic approach of patients with joint pain

    No full text
    Background Rheumatic diseases are a reason for frequent consultation with primary care doctors. Unfortunately, there is a high percentage of misdiagnosis. Objective To design an algorithm to be used by primary care physicians to improve the diagnostic approach of the patient with joint pain, and thus improve the diagnostic capacity in four rheumatic diseases. Methods Based on the information obtained from a literature review, we identified the main symptoms, signs, and paraclinical tests related to the diagnosis of rheumatoid arthritis, spondyloarthritis with peripheral involvement, systemic lupus erythematosus with joint involvement, and osteoarthritis. We conducted 3 consultations with a group of expert rheumatologists, using the Delphi technique, to design a diagnostic algorithm that has as a starting point “joint pain” as a common symptom for the four diseases. Results Thirty-nine rheumatologists from 18 countries of Ibero-America participated in the Delphi exercise. In the first consultation, we presented 94 items to the experts (35 symptoms, 31 signs, and 28 paraclinical tests) candidates to be part of the algorithm; 74 items (25 symptoms, 27 signs, and 22 paraclinical tests) were chosen. In the second consultation, the decision nodes of the algorithm were chosen, and in the third, its final structure was defined. The Delphi exercise lasted 8 months; 100% of the experts participated in the three consultations. Conclusion We present an algorithm designed through an international consensus of experts, in which Delphi methodology was used, to support primary care physicians in the clinical approach to patients with joint pain

    Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (|y| < 0.7) is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient (v2) represents the elliptic flow. The v2 coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum (pT) intervals 0.5-13 GeV/c and 0.5-8 GeV/c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v2 of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9σ in the interval 2< pT < 2.5 GeV/c in semi-central collisions (20-40%). The value of v2 decreases towards more central collisions at low and intermediate pT (0.5 < pT < 3 GeV/c). The v2 of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium
    corecore