562 research outputs found

    Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF

    Get PDF
    <b>Background:</b> Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective This study sought to investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes that could predispose to AF. <b>Methods:</b> Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. <b>Results:</b> The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period (ERP) (209 ± 8 ms; 52 cells, 18 patients vs 233 ± 7 ms; 134 cells, 49 patients; P <0.05); confirmed by multiple linear regression analysis. The left ventricular ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36% ± 4%, n = 15) than in those without LVSD (62% ± 2%, n = 31; P <0.05). In cells from patients with LVEF ≤ 45%, the ERP and action potential duration at 90% repolarization were shorter than in those from patients with LVEF > 45%, by 24% and 18%, respectively. The LVEF and ERP were positively correlated (r = 0.65, P <0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current were unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. <b>Conclusion:</b> LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF

    Towards intelligent CFRP composite machining: surface analysis methods and statistical data analysis of machined fibre laminate surfaces

    Get PDF
    Many carbon fibre reinforced polymer composite parts need to be edged trimmed before use to ensure both geometry and mechanical performance of the part edge matches the design intent. Measurement and control of machining induced surface damage of composite material is key to ensuring the part retains its strength and fatigue properties. Typically, the overall surface roughness of the machined face is taken to be an indicator of the amount of damage to the surface, and it is important that the measurement and prediction of surface roughness is completed reliably. It is known that the surface damage is heavily dependent on the fibre orientation of the composite and cutting tool edge condition. This research has developed a new ply-by-ply surface roughness measurement methods using optical focus variation surface analysis and image segmentation for calculating areal surface roughness parameters of a machined carbon fibre composite laminate. Machining experiments have been completed using a polycrystalline diamond edge trimming tool at increasing levels of cutting edge radius. Optical surface measurement and µ-CT scanning have been used to assess machining induced surface and sub-surface defects on individual fibre orientations. Statistical analysis has been used to assess the significance of machining parameters on Sa (arithmetic mean height of area) and Sv (areal magnitude of maximum valley depth) areal roughness parameters, on both overall roughness and ply-by-ply fibre orientations. Empirical models have been developed to predict surface roughness parameters using statistical methods. It has been shown that cutting edge degradation, fibre orientation and feed rate will significantly affect the cutting mechanism, machining induced surface defects and surface roughness parameters

    PHYSIOLOGICAL MONITORING OF FLUID SHIFTS DURING ORTHOSTATIC TILT

    Get PDF
    BACKGROUND While the etiology of the Spaceflight Associated Neuro-ocular Syndrome (SANS) is currently unknown, headward fluid shifts due to the removal of all gravitational vectors in space is hypothesized to be a major contributing factor. A countermeasure (CM) that can successfully redistribute body fluids similar to the upright position on Earth may thus be important for the prevention of SANS. Our SPACE-CENT Study (Studying the Physiological and Anatomical Effects of Centrifugation and Head-Down Tilt) seeks to investigate the cerebral, ocular and vestibular effects of 60-day exposure to strict 6o head-down tilt bed rest as a spaceflight analog with and without daily centrifugation. METHODS This study is part of the ongoing AGBRESA study at the DLR :envihab facility. As one component of our SPACE-CENT project, near-infrared spectroscopy (NIRS) derived total hemoglobin concentrations ([HbT]) from 4 body locations (head, chest, thigh, and calf) was measured before, during and after the international-standard orthostatic tilt test: tilt from supine to +80o, maintain for 15 min, then increase lower-body negative pressure (LBNP) by +10 mmHg every 3 minutes until subjects exhibit pre-syncope signs via a simultaneous drop in blood pressure and heart rate. RESULTS As of October 2019, the entire protocol has been completed on n=12 subjects (4 females), 5 days before bed rest onset and on R+0 following 60 days of -6o HDT bed rest. Significant shifts in [HbT]—proportional to blood volume—were observed from the head towards the feet during tilt to +80o in all subjects (Figure 1). All subjects had tests terminated sooner on R+0 (462±346 sec) than on BDC-5 (1105±464 sec), although the inter-subject variability was large (range=125-1751 sec). Interestingly, a subset of subjects (n=3) exhibited an initial increase in cerebral [HbT] at the onset of +80o, whereas the remainder showed no change or a decrease in cerebral [HbT] following tilt onset, which was predictive of longer orthostatic trials (t=2.46, p=0.022). All subjects exhibited an accelerating decrease in cerebral [HbT] that preceded test termination by 59±54 sec. CONCLUSIONS This represents preliminary findings from the first campaign of the study (12 of a planned 24 subjects). As such, final conclusions are not yet possible. However, the consistency of findings across subjects suggests that NIRS-based measures of fluid shifts along the body axis—and particularly out of the head—can predict the onset of pre-syncope by up to nearly a minute. Such data could be combined with the simultaneously acquired European Space Agency measurements of blood pressure to improve predictions of orthostatic tolerance

    Spin-1/2 J1-J2 model on the body-centered cubic lattice

    Full text link
    Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study the influence of frustration and quantum fluctuations on the magnetic ordering in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2 model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on the square lattice, we find for the bcc lattice that frustration and quantum fluctuations do not lead to a quantum disordered phase for strong frustration. The results of both approaches (ED, LSWT) suggest a first order transition at J2/J1 \approx 0.7 from the two-sublattice Neel phase at low J2 to a collinear phase at large J2.Comment: 6.1 pages 7 figure

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    Theoretical overview on high-energy emission in microquasars

    Get PDF
    Microquasar (MQ) jets are sites of particle acceleration and synchrotron emission. Such synchrotron radiation has been detected coming from jet regions of different spatial scales, which for the instruments at work nowadays appear as compact radio cores, slightly resolved radio jets, or (very) extended structures. Because of the presence of relativistic particles and dense photon, magnetic and matter fields, these outflows are also the best candidates to generate the very high-energy (VHE) gamma-rays detected coming from two of these objects, LS 5039 and LS I +61 303, and may be contributing significantly to the X-rays emitted from the MQ core. In addition, beside electromagnetic radiation, jets at different scales are producing some amount of leptonic and hadronic cosmic rays (CR), and evidences of neutrino production in these objects may be eventually found. In this work, we review on the different physical processes that may be at work in or related to MQ jets. The jet regions capable to produce significant amounts of emission at different wavelengths have been reduced to the jet base, the jet at scales of the order of the size of the system orbital semi-major axis, the jet middle scales (the resolved radio jets), and the jet termination point. The surroundings of the jet could be sites of multiwavelegnth emission as well, deserving also an insight. We focus on those scenarios, either hadronic or leptonic, in which it seems more plausible to generate both photons from radio to VHE and high-energy neutrinos. We briefly comment as well on the relevance of MQ as possible contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the conference: The multimessenger approach to the high-energy gamma-ray sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables (one reference corrected

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore